

OSMANLI UNIVERSITY LIBRARY
Call No. $512.89 /{ }^{\circ} \mathrm{C}_{2} \mathrm{C}$ Accession No 39540 Author chevalley, claude Title Construction and study of certain This book should be returned on or before the date last marked below.

THE CONSTRUCTION AND STUDY OF

CERTAIN IMPORTANT ALGEBRAS

PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN

1. The Construction and Study of Certain Important Algebras. By Claude Chevalley.

THE CONSTRUCTION AND SI'UDY OF CERTAIN IMPORTANT ALGEBRAS

BY
CLAUDE CHEVALLEY

THE MATHEMATICAL SOCIETY OF JAPAN

Copyright, 1955
 by The Mathematical Society of Japan

Printed in Japan
by The Herald Printing Co., Ltd. Tokyo

CONVENTIONS

Throughout these lectures, we mean by a ring a ring with unit element 1 (or 1^{\prime} as the case may be), and also by a homomorphism of such rings a homomorphism which maps unit upon unit. A will always denote a ring which is quite arbitrary in Chap. I, and assumed to be commutative in Chap. II and the subsequent chapters.

By a module over A, we invariably mean a unitary module. Thus a module over A is a set M such that

1) M has a structure of an additive group,
2) for every $\alpha \in A$ and $x \in M$, an element $\alpha x \in M$ called scalar multiple is defined and we have
i) $\alpha(x+y)=\alpha x+\alpha y$,
ii) $(\alpha+\beta) x=\alpha x+\beta x$,
iii) $\alpha(\beta x)=(\alpha \beta) x$,
iv) $1 \cdot x=x$.

A map of a module over A into a module over A is called linear, if it is a homomorphism of the underlying additive groups which commutes with every scalar multiplication by every element of A.

An algebra E over A means a module over A with an associative multiplication which makes E a ring satisfying

$$
\alpha(x y)=(\alpha x) y=x(\alpha y) \quad(x, y \in E ; \alpha \in A) .
$$

A homomorphism of algebras will always mean a ring homomorphism which maps unit upon unit. An ideal of an algebra means always a two-sided ideal. A subset S of an algebra is called a set of generators of E if E is the smallest subalgebra containing S and the unit 1 of E.

In dealing with modules or algebras over A, any element of the basic ring A is often called a scalar. In the case of algebras, any element of the subalgebra $A \cdot 1$ is called a scalar; a scalar clearly commutes with every element of the algebra.

CHAPTER I. GRADED ALGEBRAS.

§1. Free algebras. The first basic type of algebras we want to consider is the free algebra. Let E be an algebra over A generated by a given set of generators $\left(x_{i}\right)_{t \in I}$ (I : any set of indices). Let $\sigma=\left(i_{1}, \cdots, i h\right)$ be a finite sequence of elements of I and put $y_{\sigma}=$ $x_{i_{1}} \cdot x_{i_{h}}$. The number h is called the length of σ. Among the " finite sequences" we always admit the empty sequence σ_{0}, whose length is 0 , i. e., a sequence with no term, and we put $y_{\sigma_{0}}=1$. We define the composition of two finite sequences $\sigma=\left(i_{1}, \quad, i_{h}\right)$ and $\sigma^{\prime}=\left(j_{1}, \cdots, j_{k}\right)$ by $\sigma \sigma^{\prime}=\left(i_{1}, \quad, i_{h}, j_{1}, \cdot, j_{k}\right)$. For σ_{0}, we define $\sigma_{0} \sigma=\sigma \sigma_{0}=\sigma$, i. e., σ_{0} is the unit for this composition. Evidently this composition is associative: $\left(\sigma \sigma^{\prime}\right) \sigma^{\prime \prime}=\sigma\left(\sigma^{\prime} \sigma^{\prime \prime}\right)$, and we have $y_{\sigma \sigma^{\prime}}=y_{\sigma} y_{\sigma^{\prime}}$.

Theorem 1.1. Every element of E is a linear combination of the y_{σ} 's, σ running over all finite sequences of elements of I.

Proof. Denote by E_{1} the module spanned by all the y_{v} 's. We shall show $E=E_{1}$. First we prove:

Lemma 1.1. E_{1} is closed under multiplication.
Proof. Let z, z^{\prime} be two elements of E_{1} and put

$$
z=\sum_{\sigma} a_{\sigma} y_{\sigma}, \quad z^{\prime}=\sum_{\sigma} a_{\sigma}^{\prime} y_{\sigma} .
$$

Though these two sums seem apparently infinite, we have in fact $a_{\sigma}=0$ and $a_{\sigma}^{\prime}=0$ except for a finite number of σ 's. Then we have

$$
z z^{\prime}=\sum_{\sigma_{,} \sigma^{\prime}} a_{\sigma} a_{\sigma^{\prime}}^{\prime} y_{\sigma \sigma^{\prime}}, \quad y_{\sigma \sigma^{\prime}} \in E_{1}
$$

the sum being finite, we have $z z^{\prime} \in E_{1}$.
Now we return to the proof of Theorem 1.1. The module E_{1} is thus a subalgebra of E, and if $\sigma=(i) y_{\sigma}=x_{i}$ and also $y_{\sigma_{0}}=1$. Therefore E_{1}, containing the set of generators (x_{i}) and 1 , contains E itself, so that we obtain $E=E_{1}$, which proves the theorem.

Definition 1.1. If the y_{σ} 's are linearly independent over A, then E is called a free algebra, and the set $\left(x_{i}\right)_{\mathrm{te}} \mathrm{I}$ is called a free system of generators of E.

Existence and uniqueness of free algebras. We first prove the uniqucness. For this, we shall show a more precise condition called "universality". An algebra F over A with a system of generators $\left(x_{i}\right)_{2 \text { e } I}$ is called universal, if given any algebra E over A generated by a set of elements $\left(\xi_{i}\right)_{t \in I}$ indexed by the same set I, there is a unique homomorphism $\varphi: F \rightarrow E$ such that $\phi\left(x_{i}\right)=\xi_{i}$ for all i.

Theorem 1.2. A frec algcbra F with its free system of generators is universal.

Proof. By definition, the set $\left\{y_{\sigma}=x_{i_{1}} \cdots x_{i_{h}}\right\}$ forms a base of F as a modutc over A. Thus there is a linear mapping $\varphi: F \rightarrow E$ such that

$$
\begin{equation*}
\varphi\left(y_{\sigma}\right)=\xi_{i_{1}} \cdots \xi_{i_{h}} \quad \text { for every } \sigma=\left(i_{1}, \cdots, i_{h}\right) . \tag{1}
\end{equation*}
$$

If $\sigma=\left(i_{1}, \quad, i_{h_{2}}\right), \sigma^{\prime}=\left(j_{1}, \cdots, j_{k}\right)$ are two finite sequences of I, we have

$$
\begin{equation*}
\varphi\left(y_{\sigma} y_{\sigma^{\prime}}\right)=\varphi\left(y_{\sigma \sigma^{\prime}}\right)=\xi_{i_{1}} \cdot \xi_{i_{h}} \xi_{j_{1}} \cdot \xi_{j_{k}}=\varphi\left(y_{\sigma}\right) \varphi\left(y_{\sigma^{\prime}}\right) . \tag{2}
\end{equation*}
$$

This proves that φ is not only linear, but also a homomorphism $F \rightarrow E$. Especially putting $\sigma=(i)$ resp. $\sigma=\sigma_{0}$, we have $\phi\left(x_{i}\right)=\xi_{i}$ and $\varphi(1)=1$, which prove our assertion.

Remark that, in general, any homomorphism φ is uniquely determined when the values $\varphi\left(x_{i}\right)$ on a set of generators (x_{i}) are given.

Corollary. The free algebra generated by $\left(x_{i}\right)_{t \in I}$ is unique under isomorphism. More precisely, let F, F^{\prime} be two frec algebras with free systcms of generators $\left(x_{i}\right)_{i \in I},\left(x_{i^{\prime}}^{\prime}\right)_{i^{\prime} \in I^{\prime}}$ respectively, and let I and I^{\prime} be equipotent. Then F and F^{\prime} are isomorphic.

Proof. We may assume that $I=I^{\prime}$. By Theorem 1.2, we have two homomorphisms

$$
\varphi: F \rightarrow F^{\prime} \quad \text { such that } \varphi\left(x_{i}\right)=x_{i}^{\prime}
$$

and

$$
\varphi^{\prime}: F^{\prime} \rightarrow F \quad \text { such that } \varphi^{\prime}\left(x_{i}^{\prime}\right)=x_{i}
$$

The composite mapping $\psi^{\prime} \circ \psi^{1)}: F \rightarrow F^{\prime} \rightarrow F$ maps each x_{i} to itself,

1) $\varphi^{\prime} \circ \varphi$ is defined by $\varphi^{\prime} \circ \varphi(x)=\varphi^{\prime}(\varphi(x))$.
and by the uniqueness of homomorphism, $\varphi^{\prime} \circ \varphi$ must be the identity in F. Similarly $\varphi \circ \phi^{\prime}$ is the identity in F^{\prime}. Thercfore φ is an isomorphism and $\varphi^{\prime}=\varphi^{-1}$ which proves that F and F^{\prime} are isomorphic to each other.

Now we shall prove the existence of a free algebra, having any given set $\left(x_{i}\right)_{i_{\epsilon} I}$ as its free system of generators. Let $亡$ ' be the set of all finite sequences of elements of I. From the theory of linear algebra, we may assume that there exists a module M over A with a base equipotent to Σ '. Let $\left(y_{\sigma}\right)_{\sigma e \Sigma}$ be the base of M; we introduce a scructure of algebra into M. For this, we have only to define an associative multiplication for the elements of the base. We define it by

$$
y_{\sigma} y_{\sigma^{\prime}}=y_{\sigma \sigma^{\prime}} .
$$

Since the composition in Σ ' is associative, we have the associativity : ($\left.y_{\sigma} y_{\sigma^{\prime}}\right) y_{\sigma^{\prime \prime}}=y_{\sigma}\left(y_{\sigma^{\prime}} y_{\sigma^{\prime \prime}}\right)$. M is now a free algebra over A having the free system of generators $\left(x_{i}\right)_{i e l}$.
§2. Graded algebras. Let F be the free algebra with the free system of generators $\left(x_{i}\right)_{t \in I}$, and put $y_{\sigma}=x_{i_{1}} \cdots x_{i_{h}}\left(\sigma=\left(i_{1}, \cdots, i_{h}\right)\right)$. We shall classify the elements y_{σ} by the length of σ.

Let F_{h} be the module spanned by the y_{σ} 's, σ being of length h. Then F is the direct sum of $F_{0}, F_{1}, F_{2}, \cdots$ as a module:

$$
\begin{equation*}
F=F_{0}+F_{1}+F_{2}+\cdots+F_{h}+\cdots \tag{1}
\end{equation*}
$$

and evidently

$$
\begin{equation*}
F_{h} \cdot F_{h^{\prime}} \subset F_{h+h^{\prime}}, \tag{2}
\end{equation*}
$$

because the length of the composite $\sigma \sigma^{\prime}$ of σ and σ^{\prime} is equal to the sum of the lengths of σ and σ^{\prime}.

The free algebra $F=F_{0}+F_{1}+\cdots+F_{h}+\cdots$ is a typical example of the following general notion of graded algcbras.

Definition 1.2. Let I^{\prime} be an additive group. A Γ-graded algebra is an algebra E which is given together with a direct sum decomposition as a module

$$
\begin{equation*}
E=\sum_{y \in \Gamma} E_{\gamma} \tag{3}
\end{equation*}
$$

where the E_{γ} 's are submodules of E, in such a way that
(4) $\quad E_{\gamma} \cdot E_{\gamma^{\prime}} \subset E_{\gamma+\gamma^{\prime}}$, i.e., $x \in E_{\gamma}$ and $x^{\prime} \in E_{\gamma}$ imply $x x^{\prime} \in E_{\gamma+\gamma^{\prime}}$.

By a homomorphism of Γ-graded algebra $E=\sum_{\gamma \in \Gamma} E_{\gamma}$ into another I^{\prime}-graded algebra $E^{\prime}=\sum_{\gamma \in \Gamma} E_{\gamma}^{\prime}$ is meant a homomorphism $\varphi: E \rightarrow E^{\prime}$ of the algebras such that $\varphi\left(E_{\gamma}\right) \subset E_{\gamma}^{\prime}$.

In a Γ-graded algebra $E=\Sigma E_{\gamma}$ an element belonging to E_{γ} is called homogeneous of degree γ. The zero element 0 of E is homogeneous of any degree, but each element of E other than 0 is homogeneous of at most one degree $\gamma \in I$. Any element x of E is uniquely decomposed into the sum of homogeneous elements

$$
\begin{equation*}
x=\sum_{\gamma \in I} x_{\gamma}, \quad x_{\gamma} \in E_{\gamma}, \tag{5}
\end{equation*}
$$

where the x_{y} 's are 0 except for a finite number of γ 's. Each x_{y} in (5) is called the γ-component of x.

Lemma 1.2. The unit 1 is always homogeneous of degree θ (θ : zero element of Γ).

Proof. Decompose 1 into the sum of its homogeneous components:

$$
1=\sum_{\gamma \in \Gamma} e_{\gamma}, \quad e_{\gamma} \in E_{\gamma} .
$$

If $x_{\beta} \in E$ is homogeneous of degree $\beta \in \Gamma$, then we have

$$
E_{\beta} \ni x_{\beta}=x_{\beta} \cdot 1=\sum_{\gamma} x_{\beta} \cdot e_{\gamma} .
$$

Since $x_{\beta} \cdot e_{\gamma} \in E_{\beta+\gamma}$, we must have $x_{\beta} \cdot e_{\theta}=x_{\beta}$ and $x_{\beta} \cdot e_{\gamma}=0$ for all $\gamma \neq \theta$. This implies that e_{θ} is a right unit element for all homogeneous elements, and accordingly for all elements $x=\Sigma x_{y}$ in E. Thus $e_{\theta}=1$, and our assertion is proved.

Corollary. Scalars are homogeneous of degree θ ($\theta:$ zero element of I^{\prime}).

Among others, the following two special types of Γ-gradations are of much importance:
i) Γ 'gradations where $\Gamma=Z$ is the additive group of integers. In this case, we say simply " graded" instead of " Z-graded".
ii) $\quad \Gamma$-gradations where Γ is the group with two elements 0 and 1. In this case we write $E=E_{+}+E_{-}$in place of $E=E_{0}+E_{1}$, and E is called semi-gradcd.

A free algebra $F=F_{0}+F_{1}+\cdots+F_{h}+\cdots$ can be considered as a graded algebra with $F_{h}=\{0\}$ for all $h<0$.

Remark. A Γ-graded algebra is not a special kind of algebras. In fact, any algebra may be considered as a $I \cdot$-graded algebra with degree θ for every element.

Homogeneous subalgebras.

Definition 1.3. A submodule M of $a \Gamma$-graded algebra $E=\Sigma E_{\gamma}$ is said to be homogeneous if the homogeneous components of any element of M still belong to M. This is equivalent to the condition that $M=\Gamma_{\gamma}\left(M \cap E_{\gamma}\right)$.

Theorem 1.3. If a submodule M or an ideal \mathfrak{A} of a I-graded algebra E is generated by ${ }^{2)}$ homogeneous elcments, then it is homogcneous.

Proof. Let M be a submodule of E spanned by a set S of homogeneous elements and let M^{\prime} be the set of elements of M whose homogeneous components belong to M. It is evident that $S \subset M^{\prime} \subset M$. since S consists of homogeneous elements. We shall show that M^{r} is a submodule. If $x=\Sigma x_{\gamma}$ and $x^{\prime}=\Sigma x_{\gamma}^{\prime}$ are in M^{\prime}, then $x \pm x^{\prime}=$ $\Sigma\left(x_{\gamma} \pm x_{\gamma}^{\prime}\right)$, and $x_{\gamma} \pm x_{\gamma}^{\prime} \in M$, so that we have $x \pm x^{\prime} \in M^{\prime}$. Also for $\alpha \in A$, we have similarly $\alpha x \in M^{\prime}$. Thus M^{\prime} being a submodule containing the generators S, we have $M^{\prime} \supset M$, and so $M=M^{\prime}$, which proves that M is homogeneous.

For the case of ideals, we take the ideal \mathfrak{n} generated by a set S of homogeneous elements. \mathfrak{A} is spanned, as a module, by all elements of the form $x s y$, where $x \in E, s \in S$ and $y \in E$. Putting $x=\Sigma x_{y}$, $y=\Sigma y_{\beta}$, we have
2) The word "generated by" has somewhat different meaning for the cases of submodules and of ideals. In the former case, a submodule M is generated by S if every element of M is a linear combination of the elements of S, while in the latter case, an ideal \mathfrak{N} is generated by S if \mathfrak{A} is the smallest ideal containing the set S.

$$
x s y=\left(\sum_{\gamma} x_{\gamma}\right) s\left(\sum_{\beta} y_{\beta}\right)=\sum_{\gamma, \beta} x_{\gamma} s y_{\beta}
$$

and since ($x_{\gamma} s y_{\beta}$) is homogencous, \mathfrak{V} is also spanned by the elements $x_{\gamma} s y_{\beta}$ which are homogeneous. Thus \mathfrak{H}, being generated as a module by homogeneous elements, is homogeneous as was seen above.

Let $E=\Sigma E_{\gamma}$ be a Γ-graded algebra and \mathbb{I} a homogeneous ideal in E. We have the direct sum decomposition of \mathfrak{H} into its homogeneous parts:

$$
\mathfrak{A}=\sum_{\gamma} \mathfrak{H}_{\gamma}, \quad \mathfrak{H}_{\gamma}=\mathfrak{H} \cap E_{\gamma}
$$

The quotient algebra E / \mathfrak{R} has also the structure of Γ-gradcd algebra, because $E / \mathfrak{N}=\Xi_{\gamma}\left(E_{\gamma} / 2 l_{\gamma}\right)$ (direct sum of submodules) and ($E_{\gamma} / 2 l_{\gamma}$). ($\left.E_{\gamma^{\prime}} / \mathbb{R H}_{\gamma^{\prime}}\right) \subset E_{\gamma+\gamma^{\prime}} / \mathbb{N}_{\gamma+\gamma^{\prime}}$. Therefore E / \mathfrak{Y} is a I^{\prime}-graded algebra and $\operatorname{V}_{\gamma}\left(E_{\gamma} / \mathrm{Nl}_{\gamma}\right)$ gives its homogeneous decomposition. The canonical homomorphism $\psi: E \rightarrow E / \mathfrak{Y}$ is a homomorphism not only of algebras, but also of Γ 'graded algcbras.
§3. Homogeneous linear mappings. ${ }^{3)}$ Let E, E^{\prime} be two I^{\prime}-graded algebras over the same ring A, and let λ be a linear mapping of E into E^{\prime}, i. e., a mapping $\lambda: E \rightarrow E^{\prime}$ such that

$$
\begin{gathered}
\lambda(x+y)=\lambda(x)+\lambda(y), \quad \lambda(\alpha x)=\alpha \lambda(x) \\
\text { for every } x, y \in E ; \quad \alpha \in A .
\end{gathered}
$$

Definition 1.4. Let ν be any clement of $\Gamma ; \lambda$ is called homogeneous of degrce ν if $\lambda\left(E_{\gamma}\right) \subset E_{\gamma+\nu}^{\prime}$ for all $\gamma \in \Gamma$.

Evidently, if $\lambda: E \rightarrow E^{\prime}$ is homogeneous of degree ν and $\lambda^{\prime}: E^{\prime} \rightarrow$ $E^{\prime \prime}$ is homogeneous of degree ν^{\prime}, then $\lambda^{\prime} \circ \lambda$ is homogeneous of degree $\nu+\nu^{\prime}$.

A linear mapping $\lambda: E \rightarrow E^{\prime}$ can not always be decomposed into a finite sum of homogeneous mappings as can be shown by a coun-ter-example. But if the decomposition is possible, it is unique; it is sufficient to prove the following:
3) This notion can be defined not only for graded algebras, but also for "graded modules". But we shall restrict ourselves only to the case of graded algebras, because we use it only in this case.

Lemma 1.3. Let $\left\{\lambda_{\nu}\right\}_{v \in} \boldsymbol{r}$ be a family of linear mappings $E \rightarrow E^{\prime}$, in which each λ_{ν} is homogeneous of degree ν. If $\Sigma_{\nu} \lambda_{\nu}=0$ and $\lambda_{\nu}(x)$ $=0$ (x : any elemont in E) except for a finite number of $\nu \in I^{\prime}$, then $\lambda_{\nu}=0$ for all $\nu \in I$.

Proof. For an element x_{γ} of E_{γ}, we have $\sum_{\nu} \lambda_{\nu}\left(x_{\gamma}\right)=0$, but since $\lambda_{\nu}\left(x_{\gamma}\right) \in E_{\gamma+\nu}^{\prime}$ for each $\nu \in \Gamma$, we have $\lambda_{\nu}\left(x_{\gamma}\right)=0$ for all $\nu \in I^{\prime}$. For an arbitrary $x \in E$, let $x=\Sigma x_{y}$ be the homogeneous decomposition of x, then $\lambda_{\nu}(\sim)=\sum_{\gamma} \lambda_{\nu}\left(x_{\gamma}\right)=0$, which proves that $\lambda_{\nu}=0\left(\nu \in I^{\prime}\right)$.
§4. Associated gradations and the main involution. Let $I^{\prime}, \tilde{I}^{\prime}$ be additive groups and let a homomorphism $\tau: \Gamma \rightarrow \overline{I^{\prime}}$ be given. To any I^{\prime}-graded algebra $E=\sum_{\gamma \in \Gamma} E_{\gamma}$, we associate the following $\tilde{\Gamma}^{\prime}$-gradation of E. For each $\tilde{\gamma} \in \tilde{I}^{\prime}$, put

$$
E_{\widetilde{\gamma}}=\sum_{\gamma_{\epsilon}-1} \tilde{\gamma}_{(\widetilde{\gamma})} E_{\gamma} \quad\left(E_{\widetilde{\gamma}}=\{0\} \text { if } \tau^{-1}(\widetilde{\gamma}) \text { is empty }\right)
$$

Then obviously $E=\underset{\widetilde{\gamma} e \widetilde{\mathcal{r}}}{ } E_{\widetilde{\gamma}}$ and $E_{\widetilde{\gamma}} \cdot E_{\widetilde{\gamma}^{\prime}} \subset E_{\widetilde{\gamma}-\tilde{\gamma}^{\prime}}$. In this way $E=$ $\Sigma E_{\widetilde{\gamma}}$ can be considered as a $\widetilde{\Gamma}$-graded algebra.

Definition 1.5. The \widetilde{I}-gradation $E=\sum_{\widetilde{\gamma} \in \widetilde{\Gamma}} E_{\widetilde{\gamma}}$ is called the associated $\tilde{\Gamma}$-gradation of E, associated to the Γ-gradation $E=\sum_{\gamma \in \Gamma} E_{\gamma}$ (with respect to τ).

We shall write E^{τ} instead of E if it is taken with the associated $\tilde{I} \cdot$ gradation rather than with the original $I \cdot$-gradation. Obviously, we have the

Lemma 1.4. Every homogencous element, every homogeneous submodulc, and cvery homogeneous ideal in E arc also homogencous in E^{\top}.

In the special case where \tilde{I} is the group consisting of two ellments 0 and 1 , and where τ is onto, we write $E^{s}=E_{+}^{s}+E_{-}^{s}$ instead of $E^{\top}=E_{0}+E_{1}$, and we call it the associated semi-graded algebra of E. In that case, the kernel $\tau^{-1}(0) \subset \Gamma^{\prime}$ is denoted by Γ_{+}, which is a subgroup of index 2 , while $\tau^{-1}(1) \subset \Gamma$ is denoted by I^{\prime}-, which is a coset of I^{\prime} by Γ_{+}other than Γ_{+}. Remark that every subgroup
of Γ of index 2 can be preassigned as Γ_{+}in some unique associated semi-gradation. It may happen that Γ has a unique subgroup of index 2. If it is the case, then reference to the map τ can be omitted without any ambiguity. For example, to every graded (i.e., Z. graded) algebra $E=\sum_{h: \text { integer }}^{E_{h}}$ is associated a unique semi-graded algebra $E^{s}=E_{+}^{s}+E^{s}$, where $E_{+}^{s}=\underset{h: \text { even }}{E_{h}}, E_{-}^{s}=\underset{h: \text { odd }}{\searrow} E_{h}$. Clearly, if E is a semi-graded algebra, then its associated semi-gradation is identical with the original semi-gradation.
Main involution. Fixing a subgroup $\Gamma^{\prime} \subset \Gamma^{\prime}$ of index 2, let $E=$ $\sum_{\gamma \in \Gamma} E_{\gamma}$ be a Γ-graded algebra, and let $E^{s}=E_{+}^{s}+E_{-}^{s}$ be the associated semi-gradation of E. Every element $x \in E$ can be decomposed uniquely into the sum of its E_{+}^{s}-component x_{+}and its E_{-}^{s}-component $x_{-}: x=x_{+}+x_{-}$. If we define a map $J: E \rightarrow E$ by

$$
J(x)=x_{+}-x_{-} \quad\left(x=x_{+}+x_{-} \in E\right),
$$

then J is one-to-one and linear, preserves the degree in the I^{\prime}-gradation of E, maps unit upon unit, and is an involution (i.e., $J \circ J=$ identity). Moreover, J preserves the multiplication. In fact, let $x=x_{+}+x_{-}, y=y_{+}+y_{-}\left(x_{+}, y_{+} \in E_{+}^{s} ; x_{-}, y_{-} \in E_{-}^{s}\right)$. Then $(x y)_{+}=x_{+} y_{+}+$ $x_{-} y_{-},(x y)_{-}=x_{-} y_{+}+x_{+} y_{-}$, and so we have

$$
\begin{aligned}
J(x y) & =\left(x_{+} y_{+}+x_{-} y_{-}\right)-\left(x_{-} y_{+}+x_{+} y_{-}\right) \\
& =\left(x_{+}-x_{-}\right)\left(y_{+}-y_{-}\right)=J(x) J(y) .
\end{aligned}
$$

Therefore, J is an involutive automorphism of the Γ-graded algebra E, which we call the main involution of E.

For convenience' sake, we define the symbolical power $J^{\nu}\left(\nu \in I^{\top}\right)$ of the main involution as follows:

$$
N=\left\{\begin{array}{lll}
J & \text { if } & \nu \in \Gamma_{-} \\
\text {identity } & \text { if } & \nu \in \Gamma_{+}
\end{array}\right.
$$

Also we define the power $(-1)^{\nu}(\nu \in \Gamma)$ of the scalar (-1) of A as follows:

$$
(-1)^{\nu}=\left\{\begin{array}{rll}
-1 & \text { if } & \nu \in \Gamma_{-} \\
1 & \text { if } & \nu \in \Gamma_{+} .
\end{array}\right.
$$

Then we have, just as in the case of usual powers, the following identities:
i) $J^{v} \circ J^{\prime \prime}=J^{\nu+\nu^{\prime}}$
ii) $(-1)^{\nu}(-1)^{\nu^{\prime}}=(-1)^{\nu+\nu^{\prime}}$
iii) $\left(J^{\nu}\right)^{\nu}=\left(J^{\nu}\right)^{\nu}$
iv) $\left((-1)^{\nu}\right)^{\nu}=\left((-1)^{\nu}\right)^{\nu}$

We shall denote iii) and iv) respectively by $J^{\nu \nu \prime}$ and by (-1$)^{\nu \nu \prime}$ for the sake of simplicity, though no product is defined, in general in I^{r}. Any power of the identity map is understood to be the identity map, and any power of 1 is understood to be 1 .

If $x=\sum_{\gamma \in I} x_{\gamma} \quad\left(x_{\gamma} \in E_{\gamma}\right)$, then we can write
v) $J(x)=\sum_{\gamma \in f}(-1)^{\gamma} x_{\gamma}$.

If $\Gamma=Z$, the additive group of integers, then these definitions agree with the usual definitions of powers of an automorphism, or of an element of an algebra.
§5. Derivations. The definition of derivations in a graded algebra given here is somewhat different from the conventional definition of the derivations in the ordinary algebraic systems. In the sequel, when we speak of derivations, we understand that a fixed subgroup $I_{+} \subset \Gamma$ of index 2 is given.

Now, let E, E^{\prime} be two I^{\prime}-graded algebras over A and let φ be a homomorphism of E into E^{\prime}.

Definition 1.6. A φ-derivation D of E into E^{\prime} means a linear mapping $D: E \rightarrow E^{\prime}$, homogeneous of some given degree $\nu \in \Gamma$, such that for every $x, y \in E$,

$$
\begin{equation*}
D(x y)=D(x) \varphi(y)+\varphi\left(J^{v} x\right) D(y), \tag{1}
\end{equation*}
$$

where J^{v} is the power of the main involution defined above.
In the case where $E=E^{\prime}$ and ϕ is the identity, D is called simply a "derivation". Therefore a derivation D of E is a homogeneous linear mapping of degree ν, such that

$$
\begin{equation*}
D(x y)=D(x) y+\left(J^{\nu} x\right) D(y) \quad \text { for } x, y \in E \tag{2}
\end{equation*}
$$

If $\Gamma^{\prime}=Z$, the additive group of integers, (2) is written by
(2')

$$
D(x y)=D(x) y+(-1)^{h \nu} x D(y) \text { for } x \in E_{h}, y \in E .
$$

If the elements of E are all of degree θ ($\theta:$ zero element of Γ), then D must be of degree θ, and (2) reduces to

$$
\begin{equation*}
D(x y)=D(x) y+x D(y), \tag{3}
\end{equation*}
$$

which coincides with the ordinary definition of derivation. Also, when ν belong to I^{+}(2) reduces to (3), while if ν belong to Γ_{-} and $x \in E_{-}^{s}$, (2) reduces to

$$
\begin{equation*}
D(x y)=D(x) y-x D(y) . \tag{4}
\end{equation*}
$$

A linear mapping satisfying (4) is sometimes called "anti-derivation", but we do not use this terminology in these lectures.

The formula (1) can be written in another form. Denote by L_{x} the operation of the left multiplication by $x: L_{x} y=x y$. Then (1) is equivalent to

$$
\begin{equation*}
D \circ L_{x}=L_{D(x)} \circ \varphi+L_{\varphi\left(V^{\nu} x\right)} \circ D . \tag{5}
\end{equation*}
$$

In the case where $E=E^{\prime}$, and φ is the identity,

$$
\begin{equation*}
D \circ L_{x}=L_{D(x)}+L_{J^{v} x} \circ D . \tag{6}
\end{equation*}
$$

Remark that (5) and (6) do not contain the "parameter" y.
Lemma 1.5. For every q-derivation D, we have $D(1)=0$.
Proof. Substituting $x=y==1$ in (1), we get

$$
\left.D(1)=D(1 \cdot 1)=D(1) \varphi(1)+\varphi^{\prime} J^{\nu} 1\right) D(1),
$$

and since $J^{\nu} 1=1, \varphi(1)=1$, we obtain $D(1)=D(1)+D(1)$, which proves $D(1)=0$.

Evidently, if D and D^{\prime} are ϕ-derivations of the same degree, $D \pm D^{\prime}$ is again a φ-derivation. Also we have

Lemma 1.6. If $\varphi: E \rightarrow E^{\prime}$ and $\mathcal{P}^{\prime}: E^{\prime} \rightarrow E^{\prime \prime}$ are homomorphisms and if D, D^{\prime} are a φ-dcrivation of E into E^{\prime} and a ϕ^{\prime}-derivation of E^{\prime} into $E^{\prime \prime}$ respectively, then $\varphi^{\prime} \circ D$ and $D^{\prime} \circ \varphi$ are $\left(\varphi^{\prime} \circ \varphi\right)$-derivations of $E \rightarrow E^{\prime \prime}$.

Proof. We have only to check the condition (1). By direct calculation we have

$$
\left(\varphi^{\prime} \circ D\right)(x y)=\varphi^{\prime}(D(x)) \phi^{\prime}(\varphi(y))+\phi^{\prime}\left(\varphi\left(J^{\wedge} x\right)\right) \phi^{\prime}(D(y))
$$

and

$$
\left(D^{\prime} \circ \varphi\right)(x y)=D^{\prime}(\varphi(x)) \varphi^{\prime}(\varphi(y))+\phi^{\prime}\left(\varphi\left(J^{\nu^{\prime}} x\right) \backslash D^{\prime}(\varphi(y)),\right.
$$

and since $\varphi^{\prime} \circ D$ and $D^{\prime} \circ \varphi$ are of degrees ν and ν^{\prime} respectively, we have our assertion.

Theorem 1.4. Let D be a φ-dcrivation of E into E^{\prime}, F a homogcneous subalgcbra of E, S a sct of homogencous generators of F, und let F^{\prime} be a homogeneous subalgebra of E^{\prime}. Then if $D(S) \subset F^{\prime}$ and $\varphi(S) \subset F^{\prime}$, we have $D(F) \subset F^{\prime}$ and $\varphi(F) \subset F^{\prime}$.

Proof. The latter inclusion is evident, because φ is a homomorphism. The former is proved as follows. Let F_{1} be the set of elements $x \in F$ such that $D(x) \in F^{\prime}$. It is evident that F_{1} is closed under addition and scalar multiplication. Also if $D(x) \in F^{\prime}$ and $x=\Sigma x_{y}$, then the $D\left(x_{\gamma}\right)$'s are the homogeneous components of $D(x)$ and $D\left(x_{\gamma}\right) \in F^{\prime}$, so we obtain $x_{\gamma} \in F_{1}$. Therefore F_{1} is a homogeneous submodule of F, so that $x \in F_{1}$ implies $J^{\nu} x \in F_{1}$. Now for $x, y \in F_{1}$, we have

$$
D(x y)=D(x) \varphi(y)+\varphi\left(J^{v} x\right) D(y),
$$

and since $D(x), \varphi(y), \varphi\left(J^{\prime} x\right), D(y)$ all belong to F^{\prime}, we have $x y \in F_{1}$, which proves that F_{1} is a subalgebra containing S. S being the set of generators of F, we have $F \subset F_{1}$, which proves $D(F) \subset F^{\prime}$.

Corollary 1. Let \mathfrak{A} and \mathfrak{H}^{\prime} be homogeneous ideals of E and E^{\prime} respectively, and S be a set of homogeneous gencrators of $\mathfrak{M 1}$. If $D(S) \subset \mathfrak{H}^{\prime}, \varphi(S) \subset \mathfrak{H}^{\prime}$, we have $D(\mathfrak{H}) \subset \mathfrak{U}^{\prime}$, and $\varphi(\mathfrak{H}) \subset \mathfrak{H}^{\prime}$.

Proof. Again the latter inclusion is evident. The former is proved in a similar manner as before, showing that the set

$$
\mathfrak{H}_{1}=\left\{x \mid x \in \mathfrak{N}, \quad D(x) \in \mathfrak{A}^{\prime}\right\}
$$

is a homogeneous ideal.
Coronlary 2. Let F, S be as before. If $D(S)=\{0\}$, then $D(F)=$ $\{0\}$. ${ }^{4)}$

Proof. In a similar manner as in the proof of Theorem 1.4, we can show that
4) Remark that this assertion holds without any assumption on φ.

$$
F_{2}=\{x \mid x \in F, \quad D(x)=0\}
$$

is a homogeneous subalgebra, which proves $F \subset F_{2}$.
Corollary 3. Let F, S be as before. If two φ-derivations D, D^{\prime} coincide with each other on S, then they coincide on F.

Proof. From this assumption, D and D^{\prime} are of the same degree. Then apply Corollary 2 to the derivation $D-D^{\prime}$.

It follows from this corollary that a derivation D is completely determined if its values on the elements of a set of generators are given.

Theorem 1.5. Let E, E^{\prime} be I^{\prime}-graded algebras, φ a homomorphism $E \rightarrow E^{\prime}$, and D a φ-derivation of $E \rightarrow E^{\prime}$. Also let शI and \mathfrak{H}^{\prime} be homogeneous ideals in E and E^{\prime} respcctively such that $D(\mathfrak{H}) \subset \mathfrak{H}^{\prime}$, and $\phi(\mathfrak{H}) \subset \mathfrak{V}^{\prime}$. Under these assumptions, the induced mapping \bar{D} $E / \mathfrak{A} \rightarrow E^{\prime} / \mathfrak{H ^ { \prime }}$ obtained from D is a $\bar{\phi}$-derivation, where $\overline{\mathcal{T}}$ means the induced homomorphism $E / \mathfrak{A} \rightarrow E^{\prime} / \mathfrak{M}$ obtained from φ.

If we use the "commutative diagram" ${ }^{5}$) the map D and $\bar{\varphi}$ are represented as follows:

where ψ and ψ^{\prime} are the canonical mappings.
5) In a diagram, let every vertex represent a set, and let each oriented edge represent a mapping. A directed path in a diagram represent a mapping which is the composition of successive mappings assigned to its edges. If, for any two vertices, any two directed paths connecting them give the same mapping, then the diagram is said to be commutative. For example in Fig. 1, for the vertices P and Q and the paths as
 in it, the commutativity means $f_{4} \circ f_{3} \circ f_{2} \circ f_{1}(x)=g_{5} \circ g_{4} \circ g_{3} \circ g_{2} \circ g_{1} \circ f_{1}(x)=$ $f_{4} \circ g_{6} \circ g_{3} \circ g_{2} \circ g_{1} \circ f_{1}(x)=\cdots$ for every $x \in P$.

Proof. From the theory of mappings of modules, it is easy to see that \bar{D} is a linear mapping which makes the diagram commutative. The other conditions (\bar{D} being homogeneous and satisfying (1)) are proved by direct calculation from the definitions.
\bar{D} is called the dcrivation deduccd from D by going over to the quotient algebra $E /$ N.

Hereafter to the end of this paragraph, we assume that $E=E^{\prime}$ and φ is the identity.

Theorem 1.6. Let D, D^{\prime} be two derivations of E of degrees ν and ν^{\prime} respectively. Then

$$
\begin{equation*}
\Delta=D D^{\prime}-(-1)^{\nu v^{\prime}} D^{\prime} D \tag{7}
\end{equation*}
$$

is again a derivation. ${ }^{61}$
Proof. It is evident that Δ is linear and homogeneous of degree $\nu+\nu^{\prime}$. We have only to check the condition (5) (equivalent to (1)). For D and D^{\prime} we have by (5)

$$
D L_{x}=L_{D x}+L_{J^{\nu} x} D, \quad D^{\prime} L_{x}=L_{D^{\prime} x}+L_{J^{\nu^{\prime}} x} D^{\prime} .
$$

Then

$$
\begin{aligned}
& D D^{\prime} L_{x}=D L_{D^{\prime} x}+D L_{J^{\nu^{\prime}} x} D^{\prime}=L_{D D^{\prime} x}+L_{J^{\nu} D^{\prime} x} D+L_{D J^{\nu^{\prime}} x} D^{\prime}+L_{J^{\nu+\nu^{\prime}}{ }_{x} D D^{\prime},} \\
& D^{\prime} D L_{x}=D^{\prime} L_{D x}+D^{\prime} L_{\gamma^{\nu} x} D=L_{D^{\prime} D x}+L_{J^{\prime} D x} D^{\prime}+L_{D^{\prime} J^{\nu} x} D+L_{J^{\nu+\nu^{\prime}}{ }_{x} D^{\prime} D,},
\end{aligned}
$$ and then

$$
\Delta L_{x}=\left[D D^{\prime}-(-1)^{\nu \nu^{\prime}} D^{\prime} D\right] L_{x}=L_{\Delta x}+L_{J^{\nu}+\nu^{\prime} x} \Delta+L_{\Theta x} D^{\prime}+L_{\Theta^{\prime} x} D
$$

where

$$
\Theta=D J^{\nu \prime}-(-1)^{\nu \nu^{\prime}} J^{\prime} D \text { and } \Theta^{\prime}=J^{\nu} D^{\prime}-(-1)^{\nu^{\prime} \nu^{\prime}} D^{\prime} J^{\nu} .
$$

Now it is sufficient to prove that $\Theta=\Theta^{\prime}=0$, i. e.,

$$
\begin{equation*}
D J^{\nu \prime}=(-1)^{\nu \nu^{\prime}} J^{\nu \prime} D \text { and } J^{\prime} D^{\prime}=(-1)^{\nu \nu^{\prime}} D^{\prime} J^{\nu} \text {. } \tag{8}
\end{equation*}
$$

But the former one is obtained from the latter by exchanging D and D^{\prime}, so we show the latter one. For a homogeneous element x of degree $\gamma, D^{\prime} x$ is homogeneous of degree $\gamma+\nu^{\prime}$, and then

$$
J^{\nu} D^{\prime} x=(-1)^{\nu\left(\gamma+\nu^{\prime}\right)} D^{\prime} x=(-1)^{\nu \nu^{\prime}} D^{\prime}(-1)^{\gamma \nu} x=(-1)^{\nu \nu^{\prime}} D^{\prime} J^{\nu} x
$$

6) We omit the symbol \circ in the composition of mapping for the sake of simplicity.
which proves (8). Thus our proof is completed.
Cororlery 1. If one of ν and ν^{\prime} is in Γ_{+}, and in particular when $\nu=\nu^{\prime}=\theta$, then

$$
\left[D, D^{\prime}\right]=D D^{\prime}-D^{\prime} D
$$

is again a derivation. If both ν and ν^{\prime} are in Γ_{-}, then

$$
D D^{\prime}+D^{\prime} D
$$

is a derivation.
Corollary 2. If D is a derivation of degrec $\nu \in \Gamma^{\prime}$ - then D^{2} is also a derivation of degrec $2 \boldsymbol{\nu} \in \Gamma_{+}$.

Proof. If we put $D=D^{\prime}$ in the last part in Corollary 1, we have $2 D^{2}$ as a derivation, and the constant coefficient 2 may be omitted, provided that A is a field of characteristic other than 2.

However, we shall prove this assertion directly as follows. The characteristic property that D is a derivation of some degree ν in I^{\prime} - is

$$
\begin{equation*}
D L_{x}=L_{D x}+L_{J x} D \tag{9}
\end{equation*}
$$

Since D^{2} is of degree 2ν in I^{\prime}, we have

$$
D^{2} L_{x}=D L_{D x}+D L_{J x} D=L_{D^{2} x}+L_{D J x} D+L_{J D x} D+L_{J J x} D^{2} .
$$

But since D is of degree $\nu \in I^{\prime}$-, we have $J D=-D J$ from (8), and then

$$
D^{2} L_{x}=L_{D^{2} x}+L_{x} D^{2},
$$

which means that D^{2} is a derivation of degree $2 \nu \in I^{\prime}+$.
§6. Existence of derivations in free algebras. Let F be the free algebra with free system of generators $\left(x_{i}\right)_{\text {ieI } I}$, over a ring A. F is so graded that x_{i} are of degree 1 . Let E be a graded algebra over A and ψ a homomorphism $F \rightarrow E$.

Theorem 1.7. Assume that for each $i \in I$, a homogeneous cicment $y_{i} \in E$ of degrce $\nu+1$ is preassigned arbitrarily, whore ν is a fixed integer. Then therc exists one and only one φ-derivation D of F into E, which is of degree ν and satisfics $D\left(x_{i}\right)=y_{i}$.

Proof. The uniqueness follows from Corollary 3 to Theorem 1.4. So we shall prove the existence. By Theorem 1.1, the elements $p_{\sigma}=$ $x_{i 1} \cdots x_{i_{h}}$ form a base of F where $\sigma=\left(i_{1}, \cdots, i_{h}\right)$ runs over the set Σ consisting of all finite sequences taken from I. We shall defire $\delta\left(p_{\sigma}\right) \in E$ by induction of the length of σ. First we put

$$
\begin{equation*}
\delta\left(p_{\sigma_{0}}\right)=\delta(1)=0 \tag{1}
\end{equation*}
$$

for the empty sequence σ_{0}. If $\delta\left(p_{\sigma}\right)$ has already been defined for every σ with length less than h, we set

$$
\begin{equation*}
\delta\left(x_{i_{1}} \cdots x_{i_{h}}\right)=\delta\left(x_{i_{1}} \cdots x_{i_{h-1}}\right) \varphi\left(x_{i_{h}}\right)+\varphi\left(J^{\nu}\left(x_{i_{1}} \cdots x_{i_{h-1}}\right)\right) y_{i_{h}} . \tag{2}
\end{equation*}
$$

In the case where $h=1$, we have $\delta\left(x_{i}\right)=y_{i}$. From the definition, $\delta\left(p_{\sigma}\right)$ is homogeneous of degree $h+\nu$ if σ has the length h. For, if $h=1, \delta\left(x_{i}\right)=y_{i}$ is of degree $\nu+1$ by assumption, and if this property has already been proved up to $h-1$, the degrees of the terms on the right hand side in (2) are $(h-1+\nu)+1$ and $(h-1)+(\nu+1)$ respectively, which are both equal to $h+\nu$. Hence $\delta\left(p_{\sigma}\right)$ is of degree $h+\nu$.

Now we define a linear mapping $D: F \rightarrow E$ such that $D\left(p_{\sigma}\right)=$ $\delta\left(p_{\sigma}\right)$ for all $\sigma \in \Sigma$. Since (p_{σ}) forms a base of F, such D always exists and is determined uniquely. Evidently D is linear and homogeneous of degree ν. Next we shall show the condition

$$
\begin{equation*}
D(u v)=D(u) \varphi(v)+\varphi\left(f^{v} u\right) D(v) \quad(u, v \in F) . \tag{3}
\end{equation*}
$$

We first remark that

$$
D\left(p_{\sigma} x_{i}\right)=D\left(p_{\sigma}\right) \varphi\left(x_{i}\right)+\varphi\left(J^{\nu} p_{\sigma}\right) D\left(x_{i}\right)
$$

holds by (2), and then forming a linear combination of (p_{σ}), we obtain by linearity of D,

$$
\begin{equation*}
D\left(u x_{i}\right)=D(\imath u) \varphi\left(x_{i}\right)+\varphi\left(J^{\nu} u\right) D\left(x_{i}\right) . \tag{4}
\end{equation*}
$$

Now we denote by F_{1} the set of all elements v of F which satisfy the condition (3) for all $u \in F$. From (4), we have $x_{i} \in F_{1}$ and also $1 \in F_{1}$, for if $v=1$, (3) reduces to a trivial relation $D(u)=D(u)$. We shall prove that $v \in F_{1}$ implies $v x_{i} \in F_{1}$. In fact, substituting $u v$ in (4), we have

$$
\begin{aligned}
D\left(u v x_{i}\right)= & D(u v) \varphi\left(x_{i}\right)+\varphi\left(J^{v}(u v)\right) D\left(x_{i}\right) \\
= & D(u) \varphi(v) \varphi\left(x_{i}\right)+\varphi\left(J^{v} u\right) D(v) \varphi\left(x_{i}\right) \\
& \quad+\varphi\left(J^{v} u\right) \varphi\left(J^{v} v\right) D\left(x_{i}\right) \quad\left(\text { since } v \in F_{1}\right) \\
= & D(u) \varphi\left(v x_{i}\right)+\varphi^{\prime}\left(J^{v} u\right)\left[D(v) \varphi\left(x_{i}\right)+\varphi\left(J^{v} v\right) D\left(x_{i}\right)\right] \\
= & \left.D(u) \varphi\left(v x_{i}\right)+\varphi^{\prime} J^{v} u\right) D\left(v x_{i}\right) \quad \quad \text { (again by (4)). }
\end{aligned}
$$

which proves our assertion. Therefore beginning with $x_{i_{1}} \in F_{1}$ and repeating this process, we have $p_{\sigma} \in F_{1}$ for every $\sigma=\left(i_{1}, \cdots, i_{h}\right)$. Then by the linearity of D, we have finally that all the elements of $v \in F$ belongs to F_{1}, which proves that D is a φ-derivation satisfying the conditions of our theorem.

CHAPTER II. TENSOR ALGEBRAS.

Tensors are usually represented by a quantity with many indices such as $T_{t j-k}^{a b-c}$. However, we avoid such a representation in these lectures not only for aesthetic reasons, but also due to a more essential reason. Tensors have indices because of the use of bases; on modules without bases, such representation is impossible, while the tensor can be also defined in such cases.

To define a tensor algebra, we use the universal algebra, and then we prove the existence and uniqueness of the tensor algebra.

Hereafter we assume that the basic ring A is commutative, unless the contrary is explicitly stated.

§1. Tensor algebras.

Drfinition 2.1 Let M be a module over the basic ring A. An algebra T is called a tensor algebra over M, if it satisfies the following universality conditions:

1) T is an algebra containing M as a submodule, and is generated by $M .^{1)}$
2) For any linear mapping λ of M into an algebra E over A, there is a homomorphism θ of T into E which extends λ. This is represented in the commutative diagram:

Theorem 2.1. For any module M over A, there exists always a tensor algebra T over $M . T$ is unique under isomorphism.

Proof. Uniqueness: Let T, T^{\prime} be two algebras with the above universality properties over M, then $T \supset M, T^{\prime} \supset M$ and the identity mapping $I^{\prime}: M \rightarrow T^{\prime}$ extends to a homomorphism $\theta: T \rightarrow T^{\prime}$, and so

[^0]the identity mapping $I: M \rightarrow T$ to a homomorphism $\theta^{\prime}: T^{\prime} \rightarrow T$. The mapping $\theta^{\prime} \circ \theta$:s a homomorphism $T \rightarrow T$, which coincides with the identity on M. But since M generates $T, \theta^{\prime} \circ \theta$ is the identity of $T \rightarrow T$. Similarly $\theta \circ \theta^{\prime}$ is the identity of $T^{\prime} \rightarrow T^{\prime}$, which proves that T and T^{\prime} are isomorphic as algebras. Therefore the tensor algebra over M is unique under isomorphism.

Existence: First we shall construct an algebra satisfying somewhat modified condition of 2), and then we shall show that this algebra also satisfies 1).

For a while, we forget the structure of module of M and considcr M as a mere set. In §1, Chap. I, we have proved that there exists a free algebra F over A freely generated by the sct M. To distinguish the addition, subtraction, multiplication and scalar multiplication in this algebra from those of M, we denote the formers by $\dot{+}, \dot{-}$, and $\alpha \cdot x(\alpha \in A)$ respectively. Therefore we remark that when $x, y \in M$, we have $x \dot{+} y \notin M, x-y \notin M$, and $\alpha \cdot x \notin M$ in general. Next, we denote by S the set of all elements of the forms

$$
\begin{equation*}
x \dot{+} y-(x+y) \quad(x, y \in M) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \cdot x \dot{-}(\alpha x) \quad(\alpha \in A, x \in M) . \tag{2}
\end{equation*}
$$

Let \mathfrak{Z} be the ideal in F generated by S. Put

$$
T=F / \mathcal{I} \quad \text { (quotient algebra), }
$$

and denote by φ the canonical mapping $F \rightarrow T$.
We first prove:
Lemma 2.1. The algebra T satisfies the following condition:
2^{\prime}) If λ is a linear mapping of M into an algebra E over A, thcre exists a homomorphism $\theta: T \rightarrow E$ such that

$$
\begin{equation*}
(\theta \circ \varphi)(x)=\lambda(x) \quad \text { for all } x \in M . \tag{3}
\end{equation*}
$$

The expression (3) is represented in the commutative diagram where I means he injection $M \rightarrow F$:

Proof. By the universality of free algebras (Theorem 1.2), there exists a homomorphism $\Theta: F \rightarrow E$ which extends λ :

Next we prove $\Theta(\mathfrak{T})=0$. It is sufficient to prove that Θ maps all generators of \mathfrak{I} upon 0 . Since each generator of \mathfrak{T} has the form (1) or (2), we consider them separately. In fact,

$$
\begin{aligned}
\Theta(x+\dot{y} \dot{\ddots}(x+y))= & \Theta(x)+\Theta(y)-\Theta(x+y) \\
& (\Theta \text { is a homomorphism: } F \rightarrow E .) \\
= & \lambda(x)+\lambda(y)-\lambda(x+y) \\
=0 & (\Theta \text { extends } \lambda .) \\
& =(\lambda \text { is linear. }),
\end{aligned}
$$

and similarly we have

$$
\Theta(\alpha \cdot x \dot{-} \alpha x)=\alpha \Theta x)-\Theta(\alpha x)=\alpha \lambda(x)-\lambda(\alpha x)=0,
$$

which prove our assertion. Hence the kernel of Θ containing \mathfrak{I}, Θ defines a homomorphism $\theta: T \rightarrow E$ and if $x \in M$, we have $\theta \circ \varphi(x)=$ $\theta(x)=\lambda(x)$:

which proves our Lemma.
Now we shall prove that T also satisfies the condition 1) given in Definition 2.1. It is sufficient to prove that ρ induces an isomorphism on M, i.e.,

Although (4) may be proved directly, we shall prove it using the above Lemma 2.1. Put $E=A+M$ (direct sum). Since A has a unit element $1, E$ is the set of elements of the form $a \cdot 1+x,(a \in A, x \in M)$. Define a multiplication in E by

$$
\begin{equation*}
(a \cdot 1+x)(b \cdot 1+y)=a b \cdot 1+(b x+a y)(a, b \in A ; x, y \in M), \tag{5}
\end{equation*}
$$

then we have $x y=0$ for $x, y \in M$. It is easy to verify that E is an associative algebra over A with unit element, and the injection $M \rightarrow$ E is a linear univalent mapping. Therefore we have a homomorphism $\theta: T \rightarrow E$ such that

$$
\begin{equation*}
\theta \circ \varphi(x)=x \quad \text { for all } x \in M, \tag{6}
\end{equation*}
$$

by Lemma 2.1. If $x \in M \cap \mathfrak{T}$, we have $\phi(x)=0$ and then (6) asserts that $x=0$, which proves (4).

Also if $x, y \in M ; \alpha \in A$, we have

$$
\begin{aligned}
& \varphi(x+y)=\varphi(x+y)=\varphi(x)+\varphi(y), \\
& \varphi(\alpha x)=\varphi(\alpha \cdot x)=\alpha \varphi(x)
\end{aligned}
$$

This proves that $T \supset \varphi(M)$, and then $\varphi(M)$ and M are isomorphic with each other as modules. So we identify them. ${ }^{2}$) Then, since T is a quotient algebra of the free algebra generated by M, M and 1 form a set of generators of T. This proves that T satisfies the condition 1). Therefore the algebra T thus constructed is a tensor algebra over M, which completes our proof of existence.

Example 1. When M has a base consisting of only one elcment $\{x\}$, the tensor algebra T over $M=A x$ is the polynomial ring $A[x]$.

Proof. Let T be the tensor algebra over M and P be the algebra of polynomials of X with coefficients in A. There exists a linear mapping $\lambda: M \rightarrow P$ which maps x upon X, and we have a homomorphism $\varphi: T \rightarrow P$ which extends λ. On the other hand, T being a ring generated by x and 1 , an element $y \in T$ has the form
2) The identification is due to the following property: Given any set X, and a set M, there is a set Y equipotent to X which does not meet M.
$\sum a_{k} x^{k}$, and

$$
\phi\left(\sum a_{k} x^{k}\right)=\sum a_{k}(\varphi(x))^{k}=\sum a_{k} X^{k}
$$

Thus, $\varphi: T \rightarrow P$ is onto. Also, $\varphi\left(\sum a_{k} x^{k}\right)=0$ implies $\sum a_{k} X^{k}=0$, and then we must have $a_{k}=0$, which means that φ is an isomorphism $T \rightarrow P$. Therefore we may put $T=P=A[x]$.
§2. Graded structure of tensor algebras. In the above construction of the tensor algebra T over M, the ideal \mathfrak{T} is generated by S whose elements are all of degree 1 in F. Hence defining all the elements of M as of degree 1, the ideal \mathfrak{T} is homogeneous (cf. Theorem 1.3), and $F / \uparrow=T$ is a graded algebra. Decomposing F and T into homogeneous components,

$$
F=\sum_{h} F_{h}, \quad \text { and } \quad T=\sum_{h} T_{h},
$$

we have

$$
\begin{equation*}
T_{h}=F_{h} /\left(\mathfrak{T} \cap F_{h}\right) \tag{1}
\end{equation*}
$$

and especially,

$$
T_{h}=0 \text { for } h<0, \quad T_{0}=A \cdot 1, \quad T_{1}=M .
$$

Also T_{h} is spanned by the products of h elements of M.
We shall give a universality property of T_{h} as in the case of T.
Theorem 2.2. Let β be an h-linear mapping ${ }^{3)}$ of $M^{h}=M \times \cdots \times M$ into a module N over A. Then there exists a linear mapping ψ of T_{h} into N such that

$$
\begin{equation*}
\psi\left(x_{1} \cdot x_{h}\right)=\beta\left(x_{1}, \cdots, x_{h}\right) \text { for all } x_{1}, \cdot \cdot, x_{h} \in M \tag{2}
\end{equation*}
$$

In the right hand side of (2), $x_{1} \cdots x_{h}$ is the product of x_{1}, \cdots, x_{h} in the tensor algebra T.

Proof. Let S be the set of generators of \mathfrak{T}. An element of \mathfrak{I} is the sum of a finite number of elements of the form

[^1]$$
a \square s \square b,(s \in S ; a, b \in F),
$$
where \square is the free multiplication in F. Hence if $u \in F_{h} \cap \mathfrak{T}$, it has the form
$$
u=\sum_{i=1}^{m} a_{i} \square s_{i} \square b_{i}, \quad\left(s_{i} \in S ; a_{i}, b_{i} \in F\right),
$$
and decomposing a_{i} and b_{i} into homogeneous components
$$
a_{i}=\sum_{k} a_{i k}, \quad b_{i}=\sum_{l} b_{i l} \quad\left(a_{i k} \in F_{k}, b_{i l} \in F_{l}\right),
$$
we have
$$
u=\sum_{i, \overline{k, l},} a_{i k} \square s_{i} \square b_{i l} .
$$

Here $a_{i k} \square s_{i} \square b_{i l}$ is homogencous of degree $k+l+1$, because s_{i} is homogeneous of degree 1 . On the other hand, any homogeneous element of degree k is the sum of products of k elements of M. Therefore we have that, (3) $u \in F_{h} \cap \mathfrak{I}$ is the sum of elements of the form:

$$
\begin{gathered}
x_{1} \square \cdots \square x_{k} \square s \square y_{1} \square \cdots \square y_{l}, \\
\left(k+l+1=h ; k, l \geqq 0 ; x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{l} \in M ; s \in S\right) .
\end{gathered}
$$

Now the $\left\{z_{1} \square \cdots \square z_{h} \mid z_{1}, \cdots, z_{h} \in M\right\}$ forming a base of F_{h}, for a given h-linear mapping $\beta: M^{h \rightarrow N}$, there exists a linear mapping $\Psi: F_{h} \rightarrow$ N, such that

$$
\Psi\left(z_{1} \square \cdots \square z_{h}\right)=\beta\left(z_{1}, \cdot, z_{h}\right) \text { for all } z_{1}, \quad, z_{h} \in M,
$$

because F is free. Now we shall show that

$$
\begin{equation*}
\Psi(\mathfrak{T} \cap F)=\{0\} . \tag{4}
\end{equation*}
$$

In fact, by the above remark (3), it is sufficient to show that

$$
\begin{equation*}
\Psi\left(x_{1} \square \cdots \square x_{k} \square(x \dot{y} \dot{y} \dot{-}(x+y)) \square y_{1} \square \cdots \square y_{l}\right)=0 \text {, } \tag{5}
\end{equation*}
$$

and
(6) $\quad \Psi\left(x_{1} \square \cdots \square x_{k} \square(\alpha \cdot x-\alpha x) \square y_{1} \square \cdots \square y_{l}\right)=0, \quad(k+l+1=h)$.

Since Ψ is linear in each of its arguments, we have

$$
\Psi\left(x_{1} \square \cdots \square x_{k} \square(x \dot{+} \dot{y} \dot{-}(x+y)) \square y_{1} \square \cdots \square y_{l}\right)
$$

$$
\begin{aligned}
& =\Psi\left(x_{1} \square \cdots \square x_{k} \square x \square y_{1} \square \cdots \square y_{l}\right)+\Psi\left(x_{1} \square \cdots \square x_{k} \square y \square y_{1} \square \cdots \square y_{l}\right) \\
& \quad-\Psi\left(x_{1} \square \cdots \square x_{k} \square(x+y) \square y_{1} \square \cdots \square y_{l}\right) \\
& =\beta\left(x_{1}, \cdots, x_{k}, x, y_{1}, \cdots, y_{l}\right)+\beta\left(x_{1}, \cdots, x_{k}, y, y_{l}, \cdots, y_{l}\right) \\
& \quad-\beta\left(x_{1}, \cdots, x_{k}, x+y, y_{1}, \cdots, y_{l}\right) \\
& =0 \quad \text { (because } \beta \text { is } h \text {-linear), }
\end{aligned}
$$

and similarly we have (6), and then (4) is proved.
Thus, by (1) and (4), Ψ defines a linear mapping ψ of $T_{h}=$ $F_{h} /\left(F_{h} \cap \mathfrak{I}\right.$) into N, and $\Psi=\psi \circ \varphi_{h}=\beta$ on M^{h}. (φ_{h} is the contraction of φ to F_{h}). In diagrams this is represented by:

Since Ψ is not only linear, but a homomorphism, we have also

$$
\psi\left(z_{1} \cdot z_{h}\right)=\Psi\left(z_{1} \square \cdots \square z_{h}\right)=\beta\left(z_{1}, \cdots, z_{h}\right),
$$

which proves our Theorem.
Now we shall define the tensor product of two modules using the tensor algebra described above. A characteristic property of tensor products will be given later (cf. §4).

Definition 2.2. Let M, N be two modules over A. We set $P=$ $M+N$ (direct sum), and let T be the tensor algebra over P. The submodute Q of T_{2} spanned by all products $\{x y \mid x \in M, y \in N\}$ is callcd the tensor product of M and N, and denoted by $M \otimes N$. $x y \in Q(x \in M, y \in N)$ is also dcnoted by x 识 y.

From Theorem 2.2, we have
Corollary. Let there be given a bilinear $(=2$-lincar $)$ mapping β of $M \times N$ into a third module R, then there is a linear mapping ψ of Q into R, such that $\psi(x \geqslant y)=\beta(x, y)$ for every $x \in M$ and $y \in N$.

Example 2. If M has a base $\left\{x_{i}\right\}_{i e} I=B$, then T is isomorphic to the frec algebra on B. This theorem asserts that a tensor is
represented in the form $a_{i_{1} \cdot i}$ if a base is determincd.
Proof. Let U be the free algebra over B and again we use the notations $\dot{+}, \dot{-}$, 口 and $\alpha \cdot x$ for the laws of composition in U to distinguish them from the ones in M.

Let λ be linear mapping $M \rightarrow U$, which is the identity on B :

$$
\lambda\left(a_{1} x_{i_{1}}+\cdots+a_{n} x_{i_{n}}\right)=a_{1} \cdot x_{i_{1}} \dot{+}+\dot{+} a_{n} \cdot x_{i_{n}}
$$

Then there is a homomorphism $\theta: T \rightarrow U$ which extends λ by the property 2) of T. On the other hand, since $B \subset M \subset T$, the universality property of free algebra U asserts that there exists a homomorphism $\theta^{\prime}: U \rightarrow T$ which is the identity on B. These relations are represented in the commutative diagram:

Then $\theta^{\prime} \circ \theta$ is a homomorphism $T \rightarrow T$ and is the identity on B. Since B is the base of M, it is also the identity on M, and therefore also is on the algebra T generated by M. Similarly $\theta \circ \theta^{\prime}$ is a homomorphism $U \rightarrow U$ and is the identity on B, and therefore also is on the algebra U generated by B. Therefore θ and θ^{\prime} are isomorphisms which are reciprocal with each other. Also since λ maps M into U_{1} (submodule of elements homogeneous of degree 1 in U), T is isomorphic to U not only as merely an algebra, but also as a graded algebra, which proves our assertion. If $\left\{x_{i}\right\}_{z \in I}$ is a base of M, every element in T is of the form

$$
\sum_{i_{1} \cdots, i_{h} \mathrm{e} I} a_{i_{1} \cdots i_{h}} x_{i_{1}} \cdots x_{i_{h}}
$$

when $a_{i_{1} \cdots i_{h}} \in A$ is the component of the tensor in a familiar form.
§3. Derivations in a tensor algebra. Now, we consider a module M over A and the tensor algebra T over $M: T=\Sigma_{h} T_{h}$. We shall prove the following

Theorem 2.3. If λ is a linear mapping $M \rightarrow T_{\nu+1}$ (ν : any integer $\geqq-1$), then λ may be extended uniquely to a dcrivation in T (of degree ν).

Proof. Uniqueness is obvious since M generates T. So we prove the existence of an extension. Consider the free algebra F on the set M. Then we can write $T=F / \mathfrak{T}, T_{\nu+1}=F_{\nu+1} /\left(\mathfrak{T} \cap F_{\nu+1}\right)$, where \mathcal{I} is the ideal in F generated by the elements of the forms

$$
\begin{array}{ll}
x \dot{+} y \dot{\varphi}(x+y) & (x, y \in M), \\
\alpha \cdot x \dot{-}(\alpha x) & (\alpha \in A, x \in M) .
\end{array}
$$

Denote by π the canonical map $F_{\imath+1} \rightarrow T_{\nu+1}$ in the factorization $T_{\nu+1}=$ $F_{\nu+1} /\left(\mathfrak{I} \cap F_{\nu+1}\right)$. For each $x \in M$, we select an element $\Lambda(x) \in F_{\nu+1}$ such that $\lambda(x)=\pi(\Lambda(x))$. This defines a map $\Lambda: M \rightarrow F_{\nu+1}$ such that the diagram

is commutative. Since M is a system of free generators of F, the map $\Lambda: M \rightarrow F_{\nu+1}$ can be extended to a derivation D of F (of degree $\nu)$. Now we shall show that

$$
\begin{equation*}
D(\mathfrak{T}) \subset \mathfrak{T} . \tag{1}
\end{equation*}
$$

In fact, we have

$$
D(x \dot{+} \dot{y}-(x+y))=D(x) \dot{+} D(y) \dot{-} D(x+y) \quad(x, y \in M)
$$

so that

$$
\begin{equation*}
\pi(D(x+\dot{y} \dot{-}(x+y)))=\pi(D(x))+\pi(D(y))-\pi(D(x+y)) . \tag{2}
\end{equation*}
$$

But now, since $x, y, x+y$ are in M, we have

$$
D(x)=\Lambda(x), \quad D(y)=\Lambda(y), \quad D(x+y)=\Lambda(x+y) .
$$

Therefore the right hand side of the equality (2) can be rewritten as

$$
\lambda(x)+\lambda(y)-\lambda(x+y),
$$

which is zero, since λ is linear. This proves that $D(x \dot{+} y \dot{-}(x+y))$
lies in the kernel of π, and therefore in \mathfrak{T}. Likewise we obtain $\boldsymbol{D}(\alpha \cdot x \dot{-}(\alpha x)) \in \mathfrak{I}$, proving (1). Thus D induces a derivation d of T in such a way that the diagram

(π : canonical map $F \rightarrow T$) is commutative. To see that d is an extension of λ, let $x \in M$. Then $x=\pi(x)$ and

$$
d(x)=d(\pi(x))=\pi(D(x))=\pi(\Lambda(x))=\lambda(x) .
$$

This proves the theorem.
Tensor representation. Next, we want to make the following observation. Let M, N be modules over $A, T(M), T(N)$ their tensor algebras and $\lambda: M \rightarrow N$ a linear map of M into N. Then, as a sp pial case of the universality theorem for tensor algebras, λ extends uniquely to a homomorphism $T(M) \rightarrow T(N)$. In the special case where $M=N$, and where λ is an automorphism (i. e. an invertible linear mapping) of M, λ extends to an endomorphism $\Lambda: T, M$) $\rightarrow T(M)$. We assert that this endomorphism Λ is an automorphism. To prove this, let λ^{\prime} be the inverse of λ. Then λ^{\prime} extends also to an endomorphism $\Lambda^{\prime}: T(M) \rightarrow T(M)$, and the composite endomorphism $\Lambda \circ \Lambda^{\prime}: T(M) \rightarrow T(M)$ coincides with the identity on M, so that $\Lambda \circ \Lambda^{\prime}=$ identity on $T(M)$ which is generated by M. The same is true for $\Lambda^{\prime} \circ \Lambda$. Thus Λ, with its inverse Λ^{\prime}, is an automorphism.

Now, the restriction of this automorphism Λ on the h-th part $T_{h}(M)$ of $T(M)$ gives an automorphism Λ_{h} of $T_{h}(M)$. The correspondence $\lambda \rightarrow \Lambda_{h}$ is a homomorphism of the group of automorphisms of M into that of the module $T_{h}(M)$. This homomorphism we call the tensor representation of degree h.

Remark. Suppose M is a submodule of N, for which the injection map $M \rightarrow N$ is denoted by λ. Then the lomomorphism $\Lambda: T(M)$ $\rightarrow \boldsymbol{T}(N)$ induced by λ is, in general, not an isomorphism. However, in some special cases, Λ is an isomorphism; for example, in case
where N is the direct sum of M and some other module $P: N=$ $M+P$ (direct), or in case where both M, N have free bases.

The following provides an example of which Λ is not an isomorphism. Let $A=Z$ be the ring of integers, $N=\{0,1,2,3\}$ the cyclic group of order 4, and let $M=\{0,2\}$ be the subgroup of N of index 2. Then Λ maps the non-zero element $2 冈 2$ of M 队 $M=M$ upon the zero element of $N \geqslant N=N$, for we have $\Lambda(2 \otimes 2)=2 \otimes 2=$ $4(1 \otimes 1)=0$. This shows that $\Lambda: T(M) \rightarrow T(N)$ is not an isomorphism.
§4. Preliminaries on tensor product of modules. Before considering tensor product of semi-graded algebras, we give here some preliminaries on tensor product of modules.
Characterization. Let M_{1}, \cdots, M_{h} be modules over A. Then the tensor product $P=M_{1} \otimes \cdots M_{h}$ can be characterized in the following manner:

1) P is a module over A into which there is an h-lincar map

$$
\alpha: M_{1} \times \cdots \times M_{h} \rightarrow P
$$

such that the elements $\alpha\left(x_{1}, \cdots, x_{h}\right)=x_{1} \otimes \cdots \otimes x_{h} \in P\left(x_{i} \in M_{i}, i=1, \quad, h\right)$ span P.
Here we say that the map α is h-linear if $\alpha\left(x_{1}, \cdot, x_{h}\right)=x_{1} \otimes \cdots$ $\otimes x_{h} \in P\left(x_{i} \in M_{i}, i=1, \cdots, h\right)$ depends linearly on each one of the entries x_{1}, \cdots, x_{k} when the others are fixed.
2) If β is an h-linear mapping of $M_{1} \times \cdots \times M_{h}$ into a module \boldsymbol{Q}, then there is a linear map $\varphi: P \rightarrow Q$ such tha! $\varphi \circ \alpha=\beta$. Associativity and commutativity. Let $M_{1}, \cdots, M_{k}, M_{k+1}, \cdots, M_{h}$ $(1 \leqq k<h)$ be modules over A, and put $P=M_{1} \otimes \cdots \geqslant M_{h}, P^{\prime}=$ $\left(M_{1} \otimes \otimes M_{k}\right) \otimes\left(M_{k+1} \otimes \otimes M_{h}\right)$. Then there is an isomorphism $P \rightarrow P^{\prime}$ which maps $x_{1} \otimes \cdots \geqslant x_{k} \otimes x_{k+1} \otimes \cdots \otimes x_{h}$ upon $\left(x_{1} \otimes \cdots x_{k}\right) \geqslant$ $\left(x_{k+1} \otimes \cdot \otimes x_{h}\right)$ for any $x_{i} \in M_{i}(i=1, \cdots, h)$.

Since we have given the characteristic properties 1), 2) for the tensor product, we need only to prove 1) that ($\left.x_{1} \otimes \cdot \otimes x_{k}\right) \otimes\left(x_{k+1}\right.$ $\left.\otimes \cdots \otimes x_{h}\right) \in P^{\prime}\left(x_{i} \in M_{i}, i=1, \cdots, h\right)$ depends linearly on each argument, and P^{\prime} is spanned by elements of the above form, and 2) that, if
β is a multilinear map $M_{1} \times \cdots \times M_{h} \rightarrow Q$ ，then there is a linear map $\varphi: P^{\prime} \rightarrow Q$ such that

$$
\boldsymbol{\rho}\left(\left(x_{1} \otimes \cdots \otimes x_{k}\right) \otimes\left(x_{k+1} \otimes \cdots>x_{k}\right)\right)=\beta\left(x_{1}, \cdots, x_{h}\right) .
$$

$1)$ is obvious．In order to construct the map $\varphi: P^{\prime} \rightarrow Q$ ，we con－ sider first the mapping

$$
\left(x_{1}, \cdots, x_{k}\right) \rightarrow \beta\left(x_{1}, \cdots, x_{k}, x_{k+1}, \cdots, x_{h}\right)
$$

for each set of fixed values of x_{k+1}, \cdots, x_{k} ．This mapping is a k－linear map：$\quad M_{1} \times \cdots \times M_{k \rightarrow Q}$ ．Therefore，there is a linear map，say $\psi_{x_{k+1}, \cdots, x_{h}}: M_{1}$ ，$M_{k \rightarrow Q}$ ，such that

$$
\psi_{x_{k+1} \ldots, . .}\left(x_{h} \otimes \cdots \otimes x_{k}\right)=\beta\left(x_{1}, \cdot, x_{k}, x_{k+1}, \quad, x_{h}\right) .
$$

Now，let t be any element in $M_{1} \otimes \cdots M_{k}$ ．For this fixed t ，we consider the mapping

$$
\left(x_{k+1}, \cdots, x_{h}\right) \rightarrow \psi_{x_{k+1}, \cdots, x_{h}}(t) .
$$

We assert that this is a multilinear mapping．In fact，this is true if t is of the form $t=x_{1} \otimes \theta x_{k}$ ，because in that case we have

$$
\psi_{x_{k+1}, \cdots, x_{h}}(t)=\beta\left(x_{1}, \cdots, x_{k}, x_{k+1}, \quad, x_{h}\right)
$$

Let now $t=\sum \alpha_{i} t_{i}$ ，where each t_{i} is of the form $x_{1} \otimes \cdots \otimes x_{k}$ ．Since $\psi_{x_{k+1}, \cdots, x_{h}}: M_{1} \otimes \cdots \otimes M_{k} \rightarrow Q$ is linear，we obtain

$$
\psi_{x_{k+1} \ldots, x_{h}}(t)=\sum_{i} \alpha_{i} \psi_{x_{k+1} \ldots, . . x_{h}}\left(t_{i}\right)
$$

Each summand $\alpha_{i} \psi_{x_{k+1}, \cdots, x_{h}}\left(t_{i}\right)$ being multilinear in（ x_{k+1}, \cdots, x_{h} ），we can conclude that $\psi_{x_{k+1}, \cdots, x_{h}}(t)$ is multilinear in $\left(x_{k+1}, \cdots, x_{h}\right)$ ．Thus， for given $t \in M_{1} \otimes \cdots M_{k}$ ，there is a linear map $\gamma_{t}: M_{k_{+1}} \otimes \cdots \otimes M_{h}$ $\rightarrow Q$ such that $\gamma_{t}\left(x_{k+1} \otimes \cdots \otimes x_{h}\right)=\psi x_{k+1, \cdots}, x_{h}(t)$ ．

Similarly，we can prove that，for any fixed element $u \in M_{k+1} \otimes \cdots$ $\otimes M_{h}$ ，the mapping $t \rightarrow \gamma_{t}(u)$ is linear．Thus，the mapping $(t, u) \rightarrow$ $\gamma_{t}(u)$ is a bilinear map：$\left(M_{1}\right.$ 込 $\left.\cdots>M_{k}\right) \times\left(M_{k+1} \otimes \cdots \cdots M_{h}\right) \rightarrow Q$ ，and so，there is a linear map $\varphi:\left(M_{1} \otimes \cdots \otimes M_{k}\right)$ 込 $\left(M_{k+1} \otimes \cdots\right.$ 団 $\left.M_{h}\right) \rightarrow Q$ ， such that

$$
\varphi(t \otimes u)=\gamma_{t}(u) \quad\left(t \in M_{1} \otimes \cdot \otimes M_{k}, u \in M_{k+1} \otimes \cdots \otimes M_{h}\right)
$$

Thus，for $t=x_{1} \otimes \cdot \otimes x_{k}, u=x_{k+1} \otimes \cdot \otimes x_{k}$ ，we have

$$
\begin{gathered}
\boldsymbol{\varphi}\left(\left(x_{1} \otimes \otimes x_{k}\right) \diamond\left(x_{k+1} \otimes \cdots \otimes x_{h}\right)\right) \\
=\beta\left(x_{1}, \cdots, x_{k}, x_{k+1}, \cdots, x_{h}\right),
\end{gathered}
$$

which proves 2). Thus our assertion is proved.
By identifying $x_{1} \otimes \cdots \geqslant x_{k} \otimes x_{k+1} \otimes \cdots \geqslant x_{k}$ with

$$
\begin{gathered}
\left(x_{1} \geqslant \cdots x_{k}\right) \geqslant\left(x_{k+1} \geqslant \cdots 冈 x_{h}\right), \text { we take } \\
M_{1} \otimes \cdot 冈 M_{h}=\left(M_{1} \geqslant \cdots \geqslant M_{k}\right) \otimes\left(M_{k+1} \otimes \cdots \otimes M_{h}\right) .
\end{gathered}
$$

Let again M_{1}, \cdot, M_{h} be modules over A, and let π be any permutation of $\{1, \cdots, h\}$. Then there is an isomorphism λ_{π} of $M_{1} \otimes \cdots \otimes$ M_{h} onto $M_{\pi(1)} \cdots \cdots M_{\pi(h)}$ such that

$$
\lambda_{\pi}\left(x_{1} \otimes \cdots \otimes x_{h}\right)=x_{\pi(1)} \otimes \cdots x_{\pi(h)}\left(x_{i} \in M_{i}, i=1, \cdots, h\right) .
$$

In fact, since the mapping

$$
\left(x_{1}, \cdot, x_{h}\right) \rightarrow x_{\pi(1)} \otimes \geqslant \otimes x_{\pi(h)}
$$

is multilinear, there exists a linear map $\lambda_{\pi}: M_{1} \otimes \cdots \otimes M_{h \rightarrow} \rightarrow M_{\pi(1)} \otimes$ $\cdots M_{\pi(h)}$ such that

$$
\lambda_{\pi}\left(x_{1} \geqslant \cdot \geqslant x_{h}\right)=x_{\pi(1)} \otimes \geqslant \cdots x_{\pi}(h) \text {. }
$$

So it remains only to prove that λ_{π} is invertible. Let $\lambda_{\pi}^{\prime}: M_{\pi(1)}$ \otimes - $\lambda M_{\pi(h)} \rightarrow M_{1} \otimes \cdots \otimes M_{h}$ be the linear map obtained similarly from the multilinear mapping

$$
\left(x_{\pi(1)}, \cdots, x_{\pi(h)}\right) \rightarrow x_{1} \otimes \cdots \otimes x_{h} .
$$

Then

$$
\lambda_{\pi}^{\prime}\left(x_{\pi(1)} \otimes \cdot \otimes x_{\pi(h)}\right)=x_{1} \otimes \cdot \otimes x_{h},
$$

so that

$$
\begin{aligned}
& \lambda_{\pi} \circ \lambda_{\pi}^{\prime}=\text { identity of } M_{\pi(1)} \otimes \cdots \otimes M_{\pi(h)}, \\
& \lambda_{\pi}^{\prime} \circ \lambda_{\pi}=\text { identity of } M_{1} \otimes \cdots \otimes M_{h} .
\end{aligned}
$$

This proves that λ_{π}, with its inverse λ_{π}^{\prime}, is an isomorphism onto.
Remark. Identification of $\left(x_{1} \otimes \cdots x_{h}\right) \otimes\left(x_{k+1} \otimes \cdots x\right)$ with $x_{1} \otimes \cdots x_{k}$ in the case of associativity does not cause any confusion, while, identification will not be permitted in the case of commutativity. The reader must be careful not to make the following sort of mistakes. Consicer the case $M_{1}=M_{2}=M, M \ni x_{1}, x_{2}$. Can we identify $x_{2} \otimes x_{1}$ with $x_{1} \otimes x_{2}$ in $M \otimes M$? No! These two elements are by no means identical in general.
§5．Tensor product of semi－graded algebras．Let $E, E^{\prime \prime}$ be： semi－graded algebras over A ：

$$
E=E_{+}+E_{-}, E^{\prime}=E_{+}^{\prime}+E^{\prime} .
$$

Now，we shall give $E \otimes E^{\prime}$ ，the tensor product of the modules E, E^{\prime} ， a structure of semi－graded algebra．To do this，we first define the multiplication in $E \otimes E^{\prime}$ ，in terms of a bilinear map（ $E \not E^{\prime}$ ）× $\left(E \otimes E^{\prime}\right) \rightarrow E$ 洨。

Since $\left(E \geqslant E_{+}^{\prime}\right)+\left(E \otimes E_{-}^{\prime}\right)=E \otimes E^{\prime}=\left(E_{+} \otimes E^{\prime}\right)+\left(E_{-} \otimes E^{\prime}\right)$ ， it suffices to define four bilinear maps：

$$
\begin{aligned}
& \left(E \otimes E_{+}^{\prime}\right) \times\left(E_{+} \otimes E^{\prime}\right) \rightarrow E \otimes E^{\prime}, \\
& \left(E \otimes E_{+}^{\prime}\right) \times\left(E_{-} \otimes E^{\prime}\right) \rightarrow E \otimes E^{\prime}, \\
& \left(E \otimes E_{-}^{\prime}\right) \times\left(E_{+} \otimes E^{\prime}\right) \rightarrow E \geqslant E^{\prime}, \\
& \left(E \otimes E_{-}^{\prime}\right) \times\left(E_{-} \geqslant E^{\prime}\right) \rightarrow E \geqslant E^{\prime},
\end{aligned}
$$

which will be well defined as soon as quadri－linear maps：

$$
\begin{aligned}
& E \times E^{\prime}+\times E_{+} \times E^{\prime} \rightarrow E E^{\prime}, \\
& E \times E^{\prime}+E_{-} \times E^{\prime} \rightarrow E \geqslant E^{\prime}, \\
& E \times E^{\prime} \times \times E_{+} \times E^{\prime} \rightarrow E \geqslant E^{\prime}, \\
& E \times E^{\prime} \times \times E_{-} \times E^{\prime} \rightarrow E \geqslant E^{\prime},
\end{aligned}
$$

are given．The first three maps are defined by

$$
\left(x, x^{\prime}, y, y^{\prime}\right) \rightarrow x y \otimes x^{\prime} y^{\prime}\left\{\begin{array}{c}
x \in E, y^{\prime} \in E^{\prime}, \text { and either } \\
x^{\prime} \in E_{+}^{\prime}, y \in E_{+} \\
\text {or } \quad x^{\prime} \in E_{+}^{\prime}, y \in E_{-} \\
\text {or } \quad x^{\prime} \in E_{-}^{\prime}, y \in E_{+}
\end{array}\right.
$$

while，the last one is defined by

$$
\left(x, x^{\prime}, y, y^{\prime}\right) \rightarrow-(x y) \otimes\left(x^{\prime} y^{\prime}\right) \quad\left(x \in E, x^{\prime} \in E^{\prime}-, y \in E_{-}, y^{\prime} \in E^{\prime}\right) .
$$

In this way，we obtain a bilinear multiplication $\left(E \otimes E^{\prime}\right) \cdot(E \otimes$ $\left.E^{\prime}\right) \subset E 冈 E^{\prime}$ ．Now we assert that this multiplication is associative． Since every element of $E \otimes E^{\prime}$ is a linear combination of elements． of the form $x \otimes x^{\prime}$ ，where both x and x^{\prime} are homogeneous in the semi－gradations，it will be sufficient to check the associativity of the
multiplication for elements of that form. For convenience' sake, we set

$$
\varepsilon(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in E_{+}, \\
1 & \text { if } & x \in E_{-},
\end{array}\right.
$$

where 0,1 denote the elements of the gradation group $\Gamma=\{0,1\}$. Then we have

$$
\varepsilon(x y)=\varepsilon(x)+\varepsilon(y) \text {, if both } x, y \text { are homogeneous. }
$$

Similarly we define $\varepsilon^{\prime}\left(x^{\prime}\right)$ for any homogeneous element $x^{\prime} \in E^{\prime}$. Then, as is easily seen, we have

$$
\begin{equation*}
\left.\left(x \geqslant x^{\prime}\right) \cdot\left(y \geqslant y^{\prime}\right)=(-1)^{\mathrm{B}^{\prime}\left(x^{\prime}\right)}(y)(x y) \otimes\left(x^{\prime} y^{\prime}\right)^{4}\right) \tag{1}
\end{equation*}
$$

($x \in E, y^{\prime} \in E^{\prime}, x^{\prime}$ homogeneous $\in E^{\prime}, y$ homogeneous $\in E$).
Now we check the identity

$$
\begin{align*}
& \left(\left(x \otimes x^{\prime}\right) \cdot\left(y \otimes y^{\prime}\right)\right) \cdot\left(z \otimes z^{\prime}\right)=\left(x \otimes x^{\prime}\right) \cdot\left(\left(y \otimes y^{\prime}\right) \cdot\left(z \otimes z^{\prime}\right)\right) \tag{2}\\
& \left(x, y, z \text { homogeneous } \in E, \text { and } x^{\prime}, y^{\prime}, z^{\prime} \text { homogeneous } \in E^{\prime}\right) .
\end{align*}
$$

Computing the left hand side of (2), we obtain

$$
\begin{aligned}
\left(\left(x \otimes x^{\prime}\right) \cdot\right. & \left.\left(y \otimes y^{\prime}\right)\right) \cdot\left(z \otimes z^{\prime}\right)=(-1)^{\mathrm{e}^{\prime}\left(x^{\prime}\right) e(y)}\left(x y \otimes x^{\prime} y^{\prime}\right) \cdot\left(z \otimes z^{\prime}\right) \\
& =(-1)^{\mathrm{z}^{\prime}\left(x^{\prime}\right) \mathrm{e}(y)+\mathrm{z}^{\prime}\left(x^{\prime} y^{\prime}\right) \mathrm{e}(z)}\left(x y z \otimes x^{\prime} y^{\prime} z^{\prime}\right) \\
& =(-1)^{\mathrm{e}^{\prime}\left(x^{\prime}\right) \mathrm{e}(y)+\mathrm{z}^{\prime}\left(x^{\prime}\right) \mathrm{e}(z)+\mathrm{z}^{\prime}\left(y^{\prime}\right) \mathrm{e}(z)}\left(x y z \geqslant x^{\prime} y^{\prime} z^{\prime}\right),
\end{aligned}
$$

while, the right hand side of (2) can be reduced as follows:

$$
\begin{aligned}
\left(x \otimes x^{\prime}\right) \cdot & \left(\left(y \otimes y^{\prime}\right) \cdot\left(z \otimes z^{\prime}\right)\right)=(-1)^{z^{\prime}\left(y^{\prime}\right) \mathrm{e}(z)}\left(x \otimes x^{\prime}\right)\left(y z \otimes y^{\prime} z^{\prime}\right) \\
= & (-1)^{\mathrm{e}^{\prime}\left(y^{\prime}\right) \mathrm{e}(z)+\mathrm{z}^{\prime}\left(x^{\prime}\right) \mathrm{e}(y z)}\left(x y z \otimes x^{\prime} y^{\prime} z^{\prime}\right) \\
= & (-1)^{\mathrm{e}^{\prime}\left(y^{\prime}\right) \mathrm{e}(z)+\mathrm{e}^{\prime}\left(x^{\prime}\right) \mathrm{e}(y)+z^{\prime}\left(x^{\prime}\right) \mathrm{e}(z)}\left(x y z \otimes x^{\prime} y^{\prime} z^{\prime}\right) .
\end{aligned}
$$

This proves the associativity of the multiplication. If $1,1^{\prime}$ are the multiplicative units in E, E^{\prime} respectively, then it is clear that $1 \otimes 1^{\prime} \in E \otimes E^{\prime}$ is the multiplicative unit in $E \otimes E^{\prime}$.

Thus $E \otimes E^{\prime}$ is an associative algebra, which is semi-graded, namely, if we put

$$
\left(E \otimes E^{\prime}\right)_{+}=\left(E_{+} \otimes E_{+}^{\prime}\right)+\left(E_{-} \otimes E_{-}^{\prime}\right),
$$

4) See p. 9, (the definition of (-1$)^{\sim \nu^{\prime}}$).

$$
\left(E \otimes E^{\prime}\right)_{-}=\left(E_{+} \otimes E^{\prime}\right)+\left(E_{-} \otimes E_{+}^{\prime}\right),
$$

then

$$
E \otimes E^{\prime}=\left(E \otimes E^{\prime}\right)_{+}+\left(E \geqslant E^{\prime}\right)_{-},
$$

and

$$
\begin{aligned}
& \left(E \geqslant E^{\prime}\right)_{+} \cdot\left(E \geqslant E^{\prime}\right)_{+} \subset\left(E \geqslant E^{\prime}\right)_{+}, \\
& \left(E \otimes E^{\prime}\right)+\left(E e^{\lambda} E^{\prime}\right)-\subset\left(E \geqslant E^{\prime}\right)-, \\
& \left(E \otimes E^{\prime}\right)_{-} \cdot\left(E \text { 》 } E^{\prime}\right)_{+} \subset\left(E \text { 泡 } E^{\prime}\right)_{-}, \\
& \left(E \otimes E^{\prime}\right)_{-} \cdot\left(E \geqslant E^{\prime}\right)-\subset\left(E \geqslant E^{\prime}\right)_{+} .
\end{aligned}
$$

Observe that，if E, E^{\prime} are Γ－graded algebras of which a fixed subgroup Γ_{+}of I^{\prime} of index 2 is given，then by the associated semi－ gradation

$$
\begin{aligned}
& E_{+}=\sum_{\gamma \in \Gamma_{+}} E_{\gamma}, E_{-}=\underset{\gamma \in \Gamma_{-}}{\bigcup} E_{\gamma}, \\
& E_{+}^{\prime}=\sum_{\gamma \in I_{+}} E_{\gamma}^{\prime}, E_{-}^{\prime}=\sum_{\gamma \in \Gamma_{-}} E_{\gamma}^{\prime},
\end{aligned}
$$

$\boldsymbol{E} \otimes \boldsymbol{E}^{\prime}$ is a semi－graded algebra．The associative algebra $E \otimes E^{\prime}$ also admits the following l＇gradation：

$$
\begin{aligned}
& E \otimes E^{\prime}={\underset{\beta}{\beta} \boldsymbol{X} I}\left(E \otimes E^{\prime}\right)_{\beta}, \text { where } \\
& \left(E \otimes E^{\prime}\right)_{\beta}=\sum_{\gamma+\gamma^{\prime}} E_{\gamma} \otimes E_{\gamma^{\prime}}^{\prime \prime}
\end{aligned}
$$

of which the associated semi－gradation is just the semi－gradation of $E \otimes E^{\prime}$ given above．Direct definition of the multiplication in the I^{\prime}－graded algebra $E \otimes E^{\prime}$ is given by

$$
\left(x \otimes x^{\prime}\right) \cdot\left(y \otimes y^{\prime}\right)=(-1)^{\gamma^{\prime} \beta} x y \otimes x^{\prime} y^{\prime}\left(x \in E, x^{\prime} \in E_{\gamma^{\prime}}^{\prime}, y \in E_{\beta}, y^{\prime} \in E^{\prime}\right) .
$$

CHAPTER III. CLIFFORD ALGEBRAS.

§1. Clifford algebras. A Clifford algebra is an algebra associated to a quadratic form $f(x)$, and, roughly speaking, the one satisfying

$$
\begin{equation*}
x^{2}=f(x) \cdot 1 \tag{1}
\end{equation*}
$$

First we define a quadratic form without using the base of module.
Definition 3.1. Let M be a module over the basic ring A. A quadratic form on M is a mapping $f: M \rightarrow A$ such that

1) $f(\alpha x)=\alpha^{2} f(x)$ for all $\alpha \in A, x \in M$;
-2) the mapping $(x, y) \rightarrow f(x+y)-f(x)-f(y)=\beta(x, y)$
of $M \times M$ into A is bilinear. $\beta(x, y)$ is called the bilinear form associated to f.

It is evident from the definition, that β is symmetric :

$$
\beta(x, y)=\beta(y, x) \quad \text { and } \quad \beta(x, x)=2 f(x) .
$$

Two elements x, y such that $\beta(x, y)=0$ is said to be orthogonal with each other. When M is an n-dimensional vector space over A with a base $\left(x_{1}, \cdot, x_{n}\right)$ and if $f(x)=f\left(\sum_{i=1}^{n} \xi_{i} x_{i}\right)=\xi_{1}{ }^{2}+\cdots+\xi_{n}{ }^{2}$, then we have

$$
\beta(x, y)=\beta\left(\Sigma \xi_{i} x_{i}, \Sigma \eta_{i} x_{i}\right)=2\left(\xi_{1} \eta_{1}+\cdots+\xi_{n} \eta_{n}\right) .
$$

Hence the above definition of orthogonality coincides with the ordinary one in the n-dimensional space.

Hereafter we assume that there is given a quadratic form $f(x)$.
Definition 3.2. Let T be the tensor algebra over M, and denote by \& the multiplication ${ }^{1)}$ in T. Let (S be the ideal generated in T by all the elements of the form
(2)

$$
x, x-f(x) \cdot 1, \quad x \in M,
$$

1) In this chapter, we use this notation to distinguish it from the other various multiplications which will be considered later.
where 1 is the unit of T. The quotient algebra $C=T / \mathbb{S}$ is called the Clifford algebra associated to f over M.

If π is the canonical mapping $T \rightarrow C, \pi(M)$ is a submodule of C, which generates C. Also we have

$$
(\pi(x))^{2}=f(x) \cdot 1 \quad \text { if } \quad x \in M .
$$

We remark that the kernel of π in M is not always 0 , and we cannot identify M and $\pi(M)$ in general. However, if we wish to construct an algebra satisfying (1), the universality leads to this definition as is shown in the following:

Theorem 3.1. Assume that we have a linear mapping λ of M into an algebra F such that $(\lambda(x))^{2}=f(x) \cdot 1$ for all $x \in M$. Then there exists a homomorphism φ of C into F such that

$$
\lambda(x)=\varphi(\pi(x)), \text { for all } x \in M
$$

This is represented in the diagram:

Proof. The definition of the tensor algebra asserts the existence of a mapping $\Lambda: T \rightarrow F$ which extends λ. If $x \in M$, we have

$$
\Lambda(x>x-f(x) \cdot 1)=(\lambda(x))^{2}-f(x) \cdot 1=0 .
$$

Thus the generator of $(5$ being mapped upon 0 , we have $\quad 1(\mathbb{C})=0$, which proves that Λ defines a homomorphism φ of C into F satisfying $\Lambda=\psi \circ \pi$. The contraction λ of Λ into M satisfies our requirements.

If we put $f(x)=g(\pi(x)), g$ is a quadratic form in $\pi(M)$ into A, and for $y \in \pi(M)$, we have

$$
y^{2}=g(y) \cdot 1 .
$$

Semi-graded structure of Clifford algebras. We have described in the previous chapter, that the tensor algebra T is graded, and a fortiori, is a semi-graded algebra. Since the element $x \otimes x$ or $f(x) \cdot 1$
is of degree 2 or 0 respectively, the elements (2) is homogeneous in the semi-gradation of T. Decomposing T into $T_{+}+T_{-}$, (2) belongs to T_{+}, and (5 is homogeneous in the semi-gradation of T, which proves that $C=T / \circledast$ is a semi-graded algcbra. Putting $C=C_{+}+$ C_{-}, C_{+}and C_{-}are generated by the products of even and odd numbers of elements of $\pi(M)$ respectively, because

$$
C_{+}=\sum_{h: \text { even }} \pi\left(T_{h}\right) \quad \text { and } \quad C_{-}=\sum_{h: \text { odd }} \pi\left(T_{h}\right)
$$

If we put $\left.\bar{x}=\omega^{\prime} x\right)$ for $x \in M$, we have $\bar{x}^{2}=f(x) \cdot 1$, and then

$$
\begin{align*}
\bar{x} \bar{y} & +\bar{y} \bar{x}=(\bar{x}+\bar{y})^{2}-\bar{x}^{2}-\bar{y}^{2} \tag{3}\\
& =f(x+y) \cdot 1-f(x) \cdot 1-f(y) \cdot 1=\beta(x, y) \cdot 1 .
\end{align*}
$$

Therefore, if x and y are orthogonal, we obtain

$$
\begin{equation*}
\bar{x} \bar{y}+\bar{y} \bar{x}=0, \text { or } \bar{x} \bar{y}=-\bar{y} \bar{x} . \tag{4}
\end{equation*}
$$

§2. Exterior algebras.
Definition 3.3. When the quadratic form f reduces to 0 , the Clifford algcbra C associated to $f=0$, is called the exterior algebra over M.

We have easily
(1)

$$
x x=0
$$

and
(2)

$$
x y+y x=0, \text { or } x y=-y x,
$$

in the case of exterior algebra. The generators of (5 reduces to $x \otimes x \in T_{2}$ which are homogeneous not only in the semi-gradation of T, but also in the graded structure of T, so that the exterior algebra $E=T /(5$ has the structure of a graded algebra.

Theorem 3.2. In the case of exterior algebra E, π (the canonical mapping of T into E) is an isomorphism on M, and identifying M with $\pi(M)$, we may imbed M into E.

Proof. Since the elements of \mathbb{C} are linear combinations of sums of elements of the form

$$
u \otimes(x \otimes x) \otimes v
$$

where $x \in M$, and u, v are homogeneous in T. If $u \in T_{h}, v \in T_{k}$, we have $u \otimes(x \otimes x) \otimes v \in T_{h+k+2}$ and then this has a degree not lses
than 2 provided that $u \neq 0$ and $v \neq 0$. Therefore the homogeneous components of an element of \mathbb{C} which are not 0 must be of degree $\geqq 2$. On the other hand, the elements of M being of degree 1 , we have $\mathbb{C} \cap M=\{0\}$, which proves that π is an isomorphism of M.

Hence we identify M with its image under π in E. Then we have $E_{0}=A \cdot 1, E_{1}=M$. For $h>1, E_{k}$ is spanned by the products of h elements of M, i. e., by the elements $x_{1} \cdots x_{h}$, where $x_{i} \in M$.
§3. Structure of the Clifford algebras when M has a base. Let M be a module over A and f a quadratic form on M. Let $C=T /(\varsigma$ be the Clifford algebra associated to f over M.
1°. First we consider the case $M=A \cdot x$ (i.e., M is generated by a single element x). As we have already proved in $\S 1$, Chap. II, the tensor algebra T over $M=A \cdot x$ is the polynomial ring $A[x]$, and (5 is generated by $x^{2}-f(x) \cdot 1$. If we denote by ξ the class of x under $\pi, C=T /\left(5\right.$ has the form $A+A \cdot \xi$ where $\left.\xi^{2}=f, \xi\right) \cdot 1$. Hence $A \cdot \xi$ being a free module with a base ξ, the canonical mapping $M \rightarrow C$ is an isomorphism $A \cdot x \rightarrow A \cdot \xi \subset C$. Therefore we may imbed M into C in this case.
2°. Next we consider the case where $M=N+P$ (direct sum), and N and P are orthogonal with each other; i.e.,

$$
\beta(x, y)=0 \text { for all } x \in N, y \in P .
$$

By the orthogonality property, we have

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \text { if } x \in N \text { and } y \in P . \tag{1}
\end{equation*}
$$

Theorem 3.3. Under such conditions, let C_{M}, C_{N} and C_{P} be the Clifford algebras over M, N and P associated to f or the restrictions of f on N and P respectively. Then we have

$$
\begin{equation*}
C_{M}=C_{N} \otimes C_{P} \quad \text { (tensor product). } \tag{2}
\end{equation*}
$$

Proof. Let T_{M}, T_{N} and T_{P} be the tensor algebras over M, N and P and $\pi_{M}, \pi_{N}, \pi_{P}$ the canonical mappings of $T_{M} \rightarrow C_{M}, T_{N} \rightarrow C_{N}$, $T_{P} \rightarrow C_{P}$ respectively. By the definition of tensor algebra, the injection mapping $\varphi: N \rightarrow M$ is extended to a homomorphism $\widetilde{\mathcal{\varphi}}: T_{N} \rightarrow T_{M}$, and since

$$
\widetilde{\varphi}(x \underset{N}{\otimes} x-f(x) \cdot 1)=x \otimes x-f(x) \cdot 1, \text { for } x \in N \text {, }
$$

$\widetilde{\mathcal{T}}$ defines a homomorphism of C_{N} into C_{M}, which will be denoted also by φ. Similarly we have a homomorphism ψ of C_{P} into C_{M}, which extends the injection mapping $P \rightarrow M$.

The product $\varphi(u) \Psi(v)$ in C_{M} being bilinear with respect to $u \in C_{N}, v \in C_{P}$, we have, by the characteristic property of tensor product, a linear mapping θ of the module $C_{N} \otimes C_{P}$ into C_{M} such that

$$
\begin{equation*}
\theta(u \text { 㞶 } v)=\varphi(u) \psi(v) \quad\left(u \in C_{N}, v \in C_{P}\right) . \tag{3}
\end{equation*}
$$

By the orthogonality of N and P, we have for $x \in N, y \in P$,

$$
\begin{equation*}
\bar{x} \bar{y}=-\bar{y} \bar{x} \tag{4}
\end{equation*}
$$

where $\bar{x}=\pi_{M^{\prime}}(\phi(x))=\varphi\left(\pi_{N}(x)\right)$ and $\left.\bar{y}=\pi_{M} \psi^{\prime}(y)\right)=\psi\left(\pi_{P}(y)\right)$.
Now $C_{N}=\left(C_{N}\right)_{+}+\left(C_{N}\right)_{-}$(semi-graded), where $\left(C_{N}\right)_{+},\left(C_{N}\right)$ - are spanned by the products of even or odd numbers of elements of $\pi_{N}(N)$ respectively. Similarly we put $C_{P}=\left(C_{P}\right)_{+}+\left(C_{P}\right)_{-}$. By the anti-commutativity (4), we have

$$
\begin{cases}\varphi(u) \psi(v)=\psi(v) \varphi(u) & \text { if either } u \in\left(C_{N}\right)_{+} \text {or } v \in\left(C_{P}\right)_{+}, \tag{5}\\ \varphi(u) \psi(v)=-\psi(v) \varphi(u) & \text { if both } u \in\left(C_{N}\right)-\text { and } v \in\left(C_{P}\right)_{-} .\end{cases}
$$

Here we shall show that
Lemma 3.1. The linear mapping θ defined above is a homomorphism of $C_{N}>C_{P} \rightarrow C_{M}$, i.c., θ satisfies

$$
\begin{gather*}
\theta\left((u \otimes v)\left(u^{\prime} \otimes v^{\prime}\right)\right)=\theta(u \otimes v) \theta\left(u^{\prime} \text { 边 } v^{\prime}\right), \tag{6}\\
u, u^{\prime} \in C_{N} ; v, v^{\prime} \in C_{P},
\end{gather*}
$$

where the term in the parentheses in the left hand side of (6) is the product of $u \otimes v$ and $u^{\prime} \otimes v^{\prime}$ in $C_{N} \otimes C_{P}$ which has bcen defined in §5, Chap. II.

Proof. It is sufficient to prove that (6) holds when $u, v, u^{\prime}, v^{\prime}$ are all homogeneous in the semi-graded structure.

Putting

$$
\eta= \begin{cases}0 & \text { if } v \in\left(C_{P}\right)_{+} \\ 1 & \text { if } v \in\left(C_{P}\right)_{-}\end{cases}
$$

and

$$
\varepsilon^{\prime}= \begin{cases}0 & \text { if } u^{\prime} \in\left(C_{N}\right)_{+} \\ 1 & \text { if } u^{\prime} \in\left(C_{N}\right)_{-},\end{cases}
$$

we have $(u \geqslant v)\left(u^{\prime} \otimes v^{\prime}\right)=(-1)^{\mathfrak{p}^{\prime}} u u^{\prime} \otimes v v^{\prime}$ by the definition of the product in the tensor algebra ($\$ 5$, Chap. II). Then we have

$$
\begin{gathered}
\theta\left((u \geqslant v)\left(u^{\prime} \geqslant v^{\prime}\right)\right)=(-1)^{\eta^{\prime}} \theta\left(u u^{\prime} \geqslant v v^{\prime}\right) \\
=(-1)^{\eta^{\prime}} \varphi\left(u\left(u u^{\prime}\right) \psi\left(v v^{\prime}\right)(\text { by (3))}\right. \\
=(-1)^{\eta^{\prime}} \varphi(u) \varphi\left(u^{\prime}\right) \psi(v) \psi\left(v^{\prime}\right)
\end{gathered}
$$

(since φ and ψ are homomorphism).
On the other hand (5) is equivalent to

$$
\psi(v) \varphi^{\prime}\left(u^{\prime}\right)=(-1)^{\eta e^{\prime}} \varphi\left(u^{\prime}\right) \psi(v),
$$

and then

$$
\begin{gathered}
\theta(u \geqslant v) \theta^{\prime}\left(u^{\prime} \otimes v^{\prime}\right)=\varphi(u) \psi(v) \varphi\left(u^{\prime}\right) \psi\left(v^{\prime}\right) \quad \text { (by (3)) } \\
=(-1)^{\eta^{\prime}} \varphi(u) \varphi\left(u^{\prime} ; \psi(v) \psi\left(v^{\prime}\right) \quad\left(\text { by } \quad\left(5^{\prime}\right)\right)\right.
\end{gathered}
$$

which proves our assertion (6).
After having constructed a homomorphism $\theta: C_{N} \otimes C_{P} \rightarrow C_{M}$, we next construct a homomorphism of the inverse direction $\lambda: C_{M} \rightarrow$ $C_{N}>C_{P}$. First define a linear mapping $\lambda_{0}: M=N+P \rightarrow C_{N} \otimes C_{P}$ by

$$
\begin{equation*}
\lambda_{0}(x+y)=\pi_{N}(x) \otimes 1+1 \otimes \pi_{P}(y)(x \in N, y \in P), \tag{7}
\end{equation*}
$$

where 1 is the unit in C_{P} or $C_{N} . C_{N} \otimes C_{P}$ being an algebra, we have

$$
\begin{aligned}
\left(\lambda_{0}(x+y)\right)^{2}= & \left.\left(\pi_{N}(x) \otimes 1\right)^{2}+\left(1 \otimes \pi_{P}(y)\right)^{2}+\pi_{N^{\prime}} x\right) \otimes \pi_{P}(y) \\
& +\pi_{P}(y) \otimes \pi_{N^{\prime}}(x)
\end{aligned}
$$

and since $\pi_{N}(x) \in\left(C_{N}\right)_{-}, \pi_{P}(y) \in\left(C_{P}\right)_{-}$, the last two terms cancel out with each other by (4). Also

$$
\left.\left(\pi_{N^{\prime}}(x) \otimes 1\right)^{2}=\left(\pi_{N^{\prime}} x\right)\right)^{2} \otimes 1=f(x)(1 \otimes 1),
$$

and similarly $\left(1 \geqslant \pi_{P}(y)\right)^{2}=f(y)(1 \geqslant 1)$, then we have

$$
\begin{aligned}
\left(\lambda_{0}(x+y)\right) & =f(x)(1 \geqslant 1)+f(y)(1 \otimes 1) \\
& =f(x+y)(1 \geqslant 1) \quad(\text { by }(1)),
\end{aligned}
$$

i. e., we obtain

$$
\begin{equation*}
\left(\lambda_{\supset}(z)\right)^{2}-f(z)(1 \geqslant 1)=0,(z \in M) . \tag{8}
\end{equation*}
$$

λ_{0} is extended to a homomorphism $\tilde{\lambda}: T_{M} \rightarrow C_{N} \otimes C_{P}$ and classifying by ${ }^{\left(s_{M}\right.}, \lambda_{0}$ defines at last a homomorphism $\lambda: C_{M} \rightarrow C_{N} \otimes C_{P}$ satisfying

$$
\begin{equation*}
\lambda\left(\pi_{M}(z)\right)=\lambda_{0}(z) \quad \text { for all } z \in M, \tag{9}
\end{equation*}
$$

because of (8).
We remark that

$$
\begin{equation*}
\theta\left(\pi_{N^{\prime}}(x) \otimes 1\right)=\phi\left(\pi_{N}(x)\right) \psi(1)=\pi_{M}(\varphi(x)) \cdot 1=\pi_{M}(x) \tag{10}
\end{equation*}
$$

by (3). Now we have by (9), (7) and (10),

$$
\lambda \circ \theta\left(\pi_{N}(x) \otimes 1\right)=\lambda\left(\pi_{M}(x)\right)=\lambda_{0}(x)=\pi_{N}(x) \otimes 1,
$$

and similarly $\lambda \circ 9\left(1 \otimes \pi_{P}(y)\right)=1 \otimes \pi_{P}(y)$. But since $C_{N} \otimes C_{P}$ is generated by $\pi_{N}(x) \otimes 1$ and $1 \otimes \pi_{P}(y)$, the homomorphism $\lambda \circ \theta$ is the identity on $C_{N} \otimes C_{P}$. On the other hand, we have by (9), (7). and (10)

$$
\begin{aligned}
\theta \circ \lambda\left(\pi_{M}(x+y)\right) & =\theta\left(\lambda_{0}(x+y)\right)=\theta\left(\pi_{N}(x) \otimes 1\right)+\theta\left(1 \otimes \pi_{P}(y)\right) \\
& =\pi_{M}(x)+\pi_{M}(y)=\pi_{M}(x+y)(x \in N, y \in P),
\end{aligned}
$$

and since $\pi_{M}(x+y)$'s generate C_{M}, the homomorphism $\theta \circ \lambda$ is alsothe identity on C_{M}. Hence C_{M} and $C_{N} \otimes C_{P}$ are isomorphic with each other, which proves our theorem.
3^{j}. When A is a field K of characteristic $\neq 2$, and M is of dimension 2 over K, it is well known that f is represented in a form

$$
f(\xi x+\eta y)=a \xi^{2}+b \eta^{2} \quad(a, b \in K)
$$

by a suitable choice of a base x, y. If we put $N=K \cdot x, P=K \cdot y$, x and y are orthogonal, since f does not contains the term $\xi \eta$. Therefore we have $C_{M}=C_{N} \otimes C_{P}$, and since N or P is generated by only one element x or y respectively, the consideration in 1° gives now

$$
C_{N}=K+K x, \quad C_{P}=K+K v
$$

Thus we obtain

$$
C_{M}=(K+K x) \geqslant(K+K y)=K+K \otimes K y+K x \geqslant K+K x \geqslant K y .
$$

which proves that C_{M} is spanned by four elements $1 \geqslant 1=1,1 \otimes y$, $x \otimes 1$, and $x \otimes y$. The products between these basic elements are given by the following:

$$
\begin{aligned}
& (x \geqslant 1)^{2}=x^{2} \curvearrowright 1=f(x) \cdot 1=a \cdot 1, \\
& (1 \geqslant y)^{2}=1 \geqslant y^{2}=f(y) \cdot 1=b \cdot 1, \\
& (x \geqslant 1)(1 \geqslant y)=x:^{\lambda} y=-\left(1 \bigotimes^{\lambda} y\right)(x \geqslant 1), \\
& \text { (since both } x \geqslant 1 \text { and } 1 \geqslant y \text { are of degree } 1 \text {). }
\end{aligned}
$$

Putting $x \otimes 1=X, 1 \otimes y=Y$, we have $x \geqslant y=X Y$, and the products are given by

$$
X^{2}=a, \quad Y^{2}=b, \quad X Y=-Y X
$$

This is nothing but a generalized quaternion algebra over K. In the case where $a=b=-1$ and K is the real number field, this is the ordinary quaternion algebra of Hamilton.
4°. Suppose that M has a base consisting of a finite number of elements (x_{1}, \cdots, x_{n}) which are mutually orthogonal:

$$
\beta\left(x_{i}, x_{j}\right)=0,(i \neq j) .
$$

It is well known in the theory of quadratic forms, that when A is a field of characteristic $\neq 2$, we can always take such a base. ${ }^{\text {2 }}$

Theorem 3.4. Under such assumptions, M is identified with the submodule $\pi(M)$ of the Clifford algebra C_{M} over M. Also C_{M} is spanned by the elcments $x_{i_{1}} \cdots x_{i_{h}}\left(i_{1}<\cdots<i_{h}\right)$.

Proof. Since this is proved when $n=1$ in 1°, we proceed by induction of n, and assume that this statement has already been proved for $n-1$. Put $N=A x_{1}+\cdots+A x_{n-1}$, and $P=A x_{n} ; N$ and P satisfy the assumptions of Theorem 3.3 , so we have $C_{M} \cong C_{N} \otimes C_{P}$. Under this isomorphism, $\pi_{M}(x+y)$ corresponds to $\pi_{N}(x) \otimes 1+1 \otimes$ $\pi_{P}(y),(x \in N, y \in P)$. The assumption of the induction asserts the identification of x with $\pi_{N}(x)$ and y with $\pi_{P}(y)$. Also $x \geqslant 1+1 \otimes y$
2) In the case of characteristic 2, such a base exists only in the trivial case where the quadratic form $f(x)$ is the square of a linear form.
being 0 if and only if $x=y=0$, the correspondence $M \ni(x+y) \rightarrow x \geqslant 1$ $+1 \geqslant y=\pi_{M}(x+y)$ is an isomorphism. Thus M may be identified with $\pi_{M}(M)$. Next by our assumption of induction, C_{N} is spanned by the elements $x_{j_{1}} \cdots x_{j_{k}}\left(j_{1}<\cdots<j_{k} \leq n-1\right)$ and C_{F} is generated by x_{n} and 1. Therefore the tensor product of two modules C_{N} and C_{P} is spanned by the elements $x_{j_{1}} \cdots x_{j_{k}}\left(j_{1}<\cdot<j_{k} \leq n-1\right)$ and $x_{j_{1}} \cdot x_{j_{k}} x_{n}$, i. e., by $x_{i_{1}} \cdots x_{i_{h}}\left(i_{1}<\cdots<i_{h} \leqq n\right)$, which proves our assertion.
5°. In particular when M has a finite base x_{1}, \cdots, x_{n}, A is a field of characteristic $\neq 2$ and $f=0$, the exterior algebra E over M is spanned by 2^{n} elements $x_{i_{1}} \cdots x_{i_{h}}\left(i_{1}<\cdots<i_{h}\right)$. E is not only semigraded, but also graded, and if we denote by $E=\underset{m}{=} E_{m}$ the decomposition into homogeneous components, E_{m} is spanned by the products of m elements $x_{i_{1}} \cdot x_{i_{m}}\left(i_{1}<\cdots<i_{m}\right)$. Since $x x=0$ and $x y=-y x(x, y$ $\in M$), we have $E_{m}=0$ if $m>n$, and E_{n} is spanned by only one element $x_{1} \cdots x_{n}$. This proves that E_{m} is determined uniquely by M itself and does not depend upon the special choice of a base x_{1}, \cdots, x_{n}. Therefore if we take another finite ${ }^{3)}$ base $\left(y_{1}, \cdots, y_{p}\right)$ of M, we have $p=n$, i.e., the number of the elements of the base is invariant.
§4. Canonical anti-automorphism. The notations A, M, f, β, T, ©, $C=T /\left(5=C_{+}+C_{-}, \pi\right.$ are all as before.

Lemma 3.2. To every linear mapping $\lambda: M \rightarrow A$, there exists a derivation d_{λ} in C of degree odd., i.e., $d_{\lambda}\left(C_{+}\right)$ $\subset C_{-}$, and $d_{\lambda}\left(C_{-}\right) \subset C_{+}$, which satisfics
(1) $\quad d_{\lambda}(\pi(x))=\lambda(x) \cdot 1 \quad$ for $x \in M$, and

$$
\begin{equation*}
d_{\lambda}{ }^{2}=0 . \tag{2}
\end{equation*}
$$

Proof. Since λ may be considered as a linear mapping $\lambda: T_{1} \rightarrow$ T_{0}, there exists a derivation δ_{λ} in T of degree -1 which extends λ, as we have proved in the previous chapter. We have

$$
\delta_{\lambda}(x \otimes x-f(x) \cdot 1)=\delta_{\lambda}(x \otimes x) \quad\left(\text { since } \delta_{\lambda}(1)=0\right)
$$

3) If M has a finite base x_{1}, \cdots, x_{n}, this property holds if we delete the word "finite" for the base (y).

$$
\begin{aligned}
& =\delta_{\lambda}(x) \geqslant x-x \geqslant \delta_{\lambda}(x) \quad\left(\delta_{\lambda}\right. \text { is of degree -1) } \\
& =\lambda(x) \cdot 1 \geqslant x-\lambda(x) \cdot x \geqslant 1=\lambda(x)(x-x)=0,
\end{aligned}
$$

hence $\delta_{\lambda}(\mathbb{E})=0$. Therefore δ_{λ} defines a derivation d_{λ} of C, which satisfies the condition (1). Also $\delta_{\lambda}{ }^{2}$ is again a derivation since δ_{λ} is of odd degree, and we have

$$
\delta_{\lambda}{ }^{2}(x)=\delta_{\lambda}\left(\delta_{\lambda}(x)\right)=\delta_{\lambda}(\lambda(x) \cdot 1)=\lambda(x) \cdot \delta_{\lambda}(1)=0,
$$

which proves (2).
Now, if to an element $x(\neq 0)$ of M, there is a linear mapping $\lambda: M \rightarrow A$ such that $\lambda(x) \neq 0$, we obtain $d_{\lambda}(\pi(x)) \neq 0$ and then $\pi(x)$ $\neq 0$. When A is a field, every element $x(\neq 0)$ of M satisfies this condition, and we obtain

Coroliary. If A is a field, $\pi: M \rightarrow \pi(M) \subset C$ is an isomorphism, and we may identify M with $\pi(M)$ in C.
Canonical anti-automorphism. Hereafter we assume that π : $M \rightarrow \pi(M) \subset C$ is an isomorphism. The above corollary asserts that this assumption holds when A is a field.

Theorem 3.5. There is an anti-automorphism on C of order 2 , i. e., a mapping $u \rightarrow \bar{u}$ satisfying $\overline{u v}=\bar{v} \bar{u}$, which leaves the elements of M fixed.

This mapping is called the canonical (or main) antiautomorphism of C.

Proof. Let C^{\prime} be the "opposite" of C, i. e., C^{\prime} be a linear space with the same structure of A-module as C, and has a multiplication $u \times v=v u(u, v \in C)$. If $x \in M$, we have $x \times x-f(x) \cdot 1=x x-f(x) \cdot 1=0$ and then the injection of $M \rightarrow M \subset C^{\prime}$ is extended to a homomorphism $C \ni u \rightarrow \bar{u} \in \boldsymbol{C}$ by the universality of the tensor algebra. This homomorphism is linear and satisfies

$$
\begin{equation*}
\overline{u v}=\bar{u} \times \bar{v}=\bar{v} \bar{u} \tag{3}
\end{equation*}
$$

and also $\bar{x}=x$, for $x \in M$. Taking the mapping - again on (3), we have $\overline{\bar{u} \bar{v}}=\overline{\bar{v}} \bar{u}=\overline{\bar{u}} \overline{\vec{v}}$ which proves that $u \rightarrow \overline{\bar{u}}$ is a homomorphism of $C \rightarrow C$. By $x=\bar{x}(x \in M), u \rightarrow \overline{\bar{i}}(u \in C)$ is the identity, and then $u \rightarrow \bar{u}$ is an involution. Hence $u \rightarrow \bar{u}$ is an isomorphism of C onto C^{\prime}, i.e., an anti-automorphism of C.

If $x_{1}, x_{2}, \cdots, x_{h} \in M$, we have

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{h}=\bar{x}_{h} \cdots \bar{x}_{2} \bar{x}_{1}=x_{h} \cdot x_{2} x_{1} . \tag{4}
\end{equation*}
$$

When $f=0$ (the case of exterior algebra), we can interchange the right hand side of (4) by the anti-commutativity $x y=-y x$, and then we obtain

$$
\begin{align*}
x_{1} x_{2} \cdot x_{h} & =(-1)^{(h-1)+(h-2)+\cdots+2+1} x_{1} x_{2} \cdot x_{h} \\
& =(-1)^{h(h-1) / 2} x_{1} x_{2} \cdot x_{h}
\end{align*}
$$

Now, since E_{h} is spanned by the elements $x_{i_{1}} \cdot x_{i_{h}}$, we have

$$
\begin{equation*}
\bar{u}=(-1)^{h(h-1) / 2} u \quad \text { for all } u \in E_{h} . \tag{5}
\end{equation*}
$$

In the case of exterior algebra, (5) is taken as the definition of the canonical anti-automorphism \bar{u}. We can prove directly that $u \rightarrow \bar{u}$ defined by (5) satisfies the conditions of the canonical anti-automorphism, using the property :

$$
u v=(-1)^{h k} v u, \quad \text { for } u \in E_{h}, v \in E_{k} .
$$

§5. Derivations in the exterior algebras; Trace. In the case of an exterior algebra, we have the decomposition into homogeneous components $T=\sum_{h} T_{h}, E=\sum_{h} E_{h}$ in the Z-gradation.

Lemma. 3.3. If a linear mapping $\varphi: M \rightarrow E_{h}$ is given by a linear mapping $\psi: M \rightarrow T_{h}$, and the canonical mapping $\pi: T_{h} \rightarrow E_{h}$, we have \boldsymbol{a} derivation d of degree $h-1$, which extends $\varphi . d$ is uniquely determined

The above condition on φ is always satisfied when M is a free module, or when A is a field, or when $h=1$ since $T_{1}=E_{1}$.

Proof. The uniqueness follows from the fact that the derivation is determined uniquely by its effect on the generators.

We shall prove the existence. Since $M \subset T_{1}$, we can take a derivation δ in T of degree $h-1$ which extends λ, by the considerations in the previous chapter. We have

$$
\begin{align*}
\delta(x \otimes x) & =\delta(x) \otimes x+(-1)^{h-1} x \otimes \delta(x) \tag{1}\\
& =\psi(x) \otimes x-(-1)^{h} x \otimes \psi(x)
\end{align*}
$$

and operating π on (1), we obtain

$$
\pi(\delta(x \otimes x))=\varphi(x) \cdot x-(-1)^{h} x \cdot \varphi(x)=0
$$

since $\varphi(x) \in E_{h}, x \in E_{1}$, and $\pi(x)=x$ for $x \in M$. Thus the ideal \mathfrak{F} generated by $x \otimes x(x \in M)$ in T belongs to the kernel of π, and then δ defines a derivation d of E, which extends φ.

Coromary. Any endomorphism $M \rightarrow M=E_{1}$ is extended to a uniquely determined derivatin of degree 0 in E.

Now let $\mathfrak{F}(M)$ be the set of all endomorphisms of $M . \mathfrak{F}(M)$ is again a module over the basic ring A, and indeed it is also an algebra. For every element $\varphi \in \mathfrak{F}(M)$, we have a derivation d_{φ} of degree 0 by the above corollary.

Lemma 3.4. d_{φ} deponds linearly on φ, i.e.,

$$
\begin{equation*}
d_{a \varphi+b \varphi^{\prime}}=a d_{\varphi}+b d_{\varphi^{\prime}} \quad\left(a, b \in A ; \varphi, \varphi^{\prime} \in \mathfrak{F}(M)\right) . \tag{2}
\end{equation*}
$$

and for the " bracket operation" $\left[\varphi, \varphi^{\prime}\right]=\varphi^{\prime}-\varphi^{\prime} \varphi, d_{\varphi}$ satisfies

$$
\begin{equation*}
d_{\left[\varphi, \varphi^{\prime}\right]}=\left[d_{\varphi}, d_{\varphi^{\prime}}\right]\left(=d_{\varphi} d_{\varphi^{\prime}}-d_{\varphi^{\prime}} d_{\varphi}\right) \tag{3}
\end{equation*}
$$

Proof. Since (2) is proved similarly, we shall prove (3). The right hand side of (3) is again a derivation of E, since d_{φ} is of degree 0 , it is sufficient to prove that both sides of (3) coincide with each other on the generator M of E. In fact, for $x \in M$, we have

$$
\begin{aligned}
d_{\left[\varphi, \varphi^{\prime}\right]}(x) & =\left[\varphi, \varphi^{\prime}\right](x)=\left(\varphi \varphi^{\prime}-\varphi^{\prime} \varphi\right)(x)=\varphi \varphi^{\prime}(x)-\varphi^{\prime} \varphi(x) \\
& =d_{\varphi}\left(\varphi^{\prime}(x)\right)-d_{\varphi^{\prime}}(\varphi(x))=d_{\varphi} d_{\varphi^{\prime}}(x)-d_{\varphi^{\prime}} d_{\varphi}(x) \\
& =\left(d_{\varphi} d_{\varphi^{\prime}}-d_{\varphi^{\prime}} d_{\varphi}\right)(x),
\end{aligned}
$$

which proves our assertion.
Now we assume that E_{n} is a free module of rank 1 for some integer n, and $E_{n^{\prime}}=\{0\}$ if $n^{\prime}>n$. For example, this property holds if M is a free module with a base of n elements, i.e., when M is an n-dimensional vector space over A. Let ξ be a generator of E_{n}; $E_{n}=A \cdot \xi$. Since d_{φ} maps E_{n} into E_{n}, we have

$$
d_{\varphi} \xi=s_{\varphi} \xi,
$$

where s_{φ} is a uniquely determined element of A, which does not depend upon the special choice of ξ.

Definition 3.4. s_{φ} is called the trace of the endomorphism φ and is denoted by $s_{\varphi}=\operatorname{Tr} \varphi$.

Lemma 3.5. $\operatorname{Tr} \varphi$ is linear in $\mathfrak{F}(M)$ and

$$
\begin{equation*}
\operatorname{Tr} \varphi \varphi^{\prime}=\operatorname{Tr} \varphi^{\prime} \varphi . \tag{4}
\end{equation*}
$$

Proof. The former is evident from (2). For the latter, we have by definition,

$$
d_{\varphi} d_{\varphi^{\prime}} \xi=d_{\varphi}\left(s_{\varphi^{\prime}} \xi\right)=s_{\varphi^{\prime}}\left(d_{\varphi} \xi\right)=s_{\varphi}, s_{\varphi} \xi
$$

and similarly

$$
d_{\varphi^{\prime}} d_{\varphi} \xi=s_{\varphi} S_{\varphi^{\prime}} \xi .
$$

But since we have assumed that A is commutative, we obtain

$$
S_{\varphi} S_{\varphi^{\prime}}=S_{\varphi^{\prime}} S_{\varphi},
$$

and therefore we have

$$
\begin{aligned}
\left(\operatorname{Tr}\left(\varphi \varphi^{\prime}-\varphi^{\prime} \varphi\right)\right) \xi & =d_{\varphi \varphi^{\prime}-\varphi^{\prime} \varphi} \varphi^{\prime}=\left(d_{\varphi} d_{\varphi^{\prime}}-d_{\varphi^{\prime}} d_{\varphi}\right) \xi \\
& =\left(s_{\varphi^{\prime}} S_{\varphi}-s_{\varphi} s_{\varphi^{\prime}}\right) \xi=0
\end{aligned}
$$

which proves (4).
Remark. By (4) we have, for example,

$$
\operatorname{Tr} \varphi \varphi^{\prime} \varphi^{\prime \prime}=\operatorname{Tr} \varphi^{\prime \prime} \varphi \varphi^{\prime}=\operatorname{Tr} \varphi^{\prime} \varphi^{\prime \prime} \varphi
$$

But an expression like $\operatorname{Tr} \varphi \varphi^{\prime} \varphi^{\prime \prime}=\operatorname{Tr} \varphi^{\prime} \varphi \varphi^{\prime \prime}$ is false in general. Also $\operatorname{Tr} \varphi$ is not a homomorphism $\mathfrak{F}(M) \rightarrow A$.

When M is an n-dimensional vector space with a base (x_{1}, \cdots, x_{n}), any element φ of $\mathfrak{F}(M)$ is represented by a square matrix ($a_{j t}$) of order n, such that

$$
\phi x_{i}=\sum_{j=1}^{n} a_{j i} x_{j} .
$$

We shall show that the $\operatorname{Tr} \varphi$ defined above coincides with the classical one defined by the sum of the diagonal elements of a matrix. In our present case we have $E_{n}=A x_{1} \cdot x_{n}$, so we may take $\xi=$ $x_{1} \cdots x_{n}$. Then

$$
\begin{aligned}
(\operatorname{Tr} \varphi) \xi & =d_{\varphi} \xi=d_{\varphi}\left(x_{1} \cdots x_{n}\right) \\
& =\left(d_{\varphi} x_{1}\right) x_{2} \cdots x_{n}+x_{1}\left(d_{\varphi} x_{2}\right) x_{3} \cdots x_{n}+\cdots+x_{1} \cdots x_{n-1}\left(d_{\varphi} x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k-1}^{n} x_{1} \cdot x_{k-1} \varphi\left(x_{k}\right) x_{k+1} \cdots x_{n} \\
& =\sum_{k=1}^{n} x_{1} \cdots x_{k} \quad\left(\sum_{i=1}^{n} a_{i k} x_{i}\right) x_{k+1} \cdots x_{n},
\end{aligned}
$$

since d_{φ} is of degree 0 . But, since $x u x= \pm x x u=0$, for $x \in M, u \in E_{\text {, }}$ we have

$$
x_{1} \cdot x_{k-1}\left(\sum_{i=1}^{n} a_{t k} x_{i}\right) x_{k+1} \cdots x_{n}=a_{k k} x_{1} \cdots x_{k} \cdots x_{n}=a_{k k} \xi,
$$

which proves that

$$
(\operatorname{Tr} \varphi) \xi=\left(\sum_{k-1}^{n} a_{k k}\right) \xi,
$$

i. e., $\operatorname{Tr} \varphi=a_{11}+a_{22}+\cdots+a_{n n}$.

Our definition of the trace seems to be intrinsic; it is evident from our definition that $\operatorname{Tr} \varphi$ is determined only by φ, and does not depend upon the special choice of a base.
§6. Orthogonal groups and spinors. Let K be a field of characteristic $p(\geqq 0)$, and V a finite dimensional vector space over K. Also let f be a quadratic form on V, β the associated bilinear form. We assume that β is non-degencrate, i.e., $\beta\left(x, y_{0}\right)=0$ for all $x \in V$, implies $y_{0}=0$. We denote by C the Clifford algebra associated to f over V.

Definition 3.5. An automorphism s of V is said to be orthogonal associated to f, if s leaves f invariant, i.e.,

$$
f(s x)=f(x) \quad \text { for all } x \in V .
$$

We use the terminology "orthogonal transformation" instead of "orthogonal automorphism". The set of all orthogonal transformations forms a group which is called the orthogonal group of f and denoted by $O(f)$.

Definition 3.6. The sct Γ of $u \in C$, such that uas an inverse u^{-1} and

$$
u V u^{-1} \subset V, \text { i.e., } u x u^{-1} \subseteq V \text { for all } x \in V,
$$

forms a group, which is called the Clifford group of f.

If u belongs to the Clifford group Γ of $f, s_{u}(x)=u x u^{-1}$ is an orthogonal transformation, because

$$
f\left(s_{u}(x)\right) \cdot 1=\left(s_{u}(x)\right)^{2}=\left(u x u^{-1}\right)^{2}=u x^{2} u^{-1}=u(f(x) \cdot 1) u^{-1}=f(x) \cdot 1 .
$$

Hence the correspondence $\chi: u \rightarrow s_{u}$ is a linear representation of Γ, which is called the vector representation of Γ. The kernel of this representation is the set of invertible elements in the center of C.

If s is an automorphism of V, it is represented by a matrix and we have the determinant of s. If s is orthogonal, we have det $s=$ ± 1. The set

$$
\{s \in O(f) \mid \operatorname{det} s=1\}
$$

forms a subgroup of $O(f)$, which is of index 2 unless the characteristic p of K is 2 . When $p=2$, we have det $s=1$ for all $s \in O(f)$.

Let $C=C_{+}+C_{-}$be the homogeneous decomposition of C in the semi-graded structure and we put $\Gamma^{+}=\Gamma^{\top} \cap C_{+}$. We define $O^{+}(f)$ as follows:

$$
\text { If } p \neq 2, O^{+}(f)=\{s \in O(f) \mid \operatorname{det} s=1\}
$$

(1)

$$
\text { If } p=2, O^{+}(f)=\left\{\chi(u) \mid u \in \Gamma^{+}\right\} .
$$

Here we can prove that in both cases, $\left\{\chi(u) \mid u \in I^{+}\right\}$coincide with $O^{+}(f)$, and $O^{+}(f)$ is a subgroup of $O(f)$ with indcx 2 .

Let $u \rightarrow \bar{u}$ be the canonical anti-automorphism given in §4. We can prove that $\bar{u} u \in K \cdot 1$ for every $u \in I^{+}$. Putting $\bar{u} u=\lambda(u) \cdot 1, \lambda$ is a homomorphism $\Gamma \rightarrow K^{*}$, where K^{*} is the multiplicative group of non-zero elements in K. The kernel $I_{0}{ }^{+}$of this homomorphism λ is called the reduced Clifford group. Also we denote by $\Omega 2$ the image of $\Gamma_{0}{ }^{+}$under the vector representation χ, and call it the reduced orthogonal group.

When K is \Re, the real number field, and $f(x)=f\left(\sum_{i=1}^{n} \xi_{i} x_{i}\right)=\xi_{1}^{2}+\cdots$ $+\xi_{n}^{2}$ (positive definite), $O^{+}(f)$ is the ordinary special orthogonal group. It is well known that $O^{+}(f)$ is not simply connected if $n \geq 3$; the Poincare group of $O^{+}(f)$ is actually of order 2 when $n \geq 3$. Also we have $\Omega=O^{+}(f)$ and $\Gamma_{0}^{+} \rightarrow \Omega=O^{+}(f)$ is a covering mapping.

We now return to the general case. A linear subspace W of V is called totally singular if the restriction of the quadratic form on W is the zero quadratic form over W. All maximal totally singular subspaces of V have the same dimension, and the common dimension is called the indcx of f. It is evident that f is of index 0 if and only if there is no $x \neq 0$ with $f(x)=0$. Here we have the following results :

If the index of f is not 0 , we have

$$
\begin{equation*}
O^{+}(f) / \Omega \cong K^{*} /\left(K^{*}\right)^{2} .^{4} \tag{2}
\end{equation*}
$$

Ω is the commutator subgroup of $O(f)$ except whon K has only two elcments, $\operatorname{dim} V=4$ and f is of index 2 . If furthermore $n=$ $\operatorname{dim} V \geq 3, \Omega$ is the commutator subgroup of $O^{+}(f)$. Also when $n=\operatorname{dim} V=2, O^{+}(f)$ is abelian, and its commutator grout consists only of $\{c\}$.

On the other hand, the structure of Ω when the index of f is 0 is quite unknown.

Now we assume that V is of even dimension, namely $2 n$, and let $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ be the base of V. Suppose that f can be reduced to the following form:

$$
\begin{equation*}
f\left(\Sigma \xi_{i} x_{i}+\Sigma \eta_{i} y_{i}\right)=\Sigma \xi_{i} \eta_{i} . \tag{3}
\end{equation*}
$$

When K is algebraically closed, every quadratic form whose β is non-degenerate can be reduced to this form. On the contrary, if K is not algebraicaily closed, such reduction is not always possible, as will be shown by an example of $\xi^{2}+\eta^{2}$ over the real number field. Under these assumptions, the Clifford algebra C is isomorphic to a full matric algebra and has the dimension $2^{2 n}$, while C_{+}is of dimension 2^{n}. There is a minimal left ideal \mathfrak{A} in C, of dimension 2^{n}. For $u \in C$, we have $\xi \in\{\rightarrow u \xi \in \mathfrak{l}$ and then the transformation $\lambda_{u}: \xi \rightarrow u \xi \xi$ is a representation of C. λ_{u} induces a representation over $I^{+}(\subset C)$, and is an isomorphic representation on Γ^{+}. This is called the spin representation of I^{+}, and the elements of \mathfrak{H} are called spinors.
4) K^{*} means the multiplicative group of elements $\neq 0$ in K.

The origin of this name is as follows. When E. Cartan classified the simple representations of all simple Lie algebras, he discovered a new representation of the orthogonal Lie algebra. But he dit not give a specific name to it, and far later, he called the elements on which this new representation operates spinors, generalizing the terminology adopted by the physicists in a special case for the rotational group of the three dimensional space.

The spin representation of Γ is simple except when K has only two elements, $n=1$ and f is of index 1 . Also the spin representation of Γ^{+}is either simple or the sum of two simple representations.

We may assume further that $\mathfrak{i f}$ is homogeneous in the semigraded structure of C, i.e.,

$$
\begin{equation*}
\mathfrak{A}=\mathfrak{U}_{+}+\mathfrak{H}_{-} \text {, where } \mathfrak{A}_{ \pm}=\mathfrak{A} \cap C_{ \pm} . \tag{4}
\end{equation*}
$$

This corresponds to the decomposition of the spin representation into two irreducible ones, and each of them is called the half spin representation. Each half spin representation is of degree 2^{n-1}.

When $n>2$, the kernel of each half spin representation is of order 1 or 2 . On the contrary, if $n=2$, i. e., if V is of dimension 4, it is not so. This corresponds to the fact that the rotational group of dimension 4 is not simple. When $n=2$, let Δ_{1}, d_{2} be the kernels of the two half spin representations of $I_{0}{ }^{+}$; we have

$$
I_{0}^{\prime}{ }^{+}=\Delta_{1} \cdot \Delta_{2} \quad(\text { direct product })
$$

and the spin representation of $\Gamma_{0}{ }^{+}$splits into two parts. One of them operates on \mathfrak{A}_{+}and leaves invariant \mathfrak{R}_{-}, while the other operates on \mathfrak{H}_{-}and fixes \mathfrak{H}_{+}. Moreover the covering group of the orthogonal group splits into the product of two subgroups. The representation $\lambda_{u}\left(u \in \Delta_{1}\right)$ produces all automorphisms of determinant 1 on \mathfrak{N}_{+}, and then each of Δ_{1} and Δ_{2} is isomorphic to the multiplicative group of 2-2-matrices of determinant 1 .

Now let $\Gamma_{0}{ }^{\prime+}$ be the reduced Clifford group of a quadratic form in 3 variables. We have $\Gamma_{0}{ }^{\prime+} \subset \Gamma_{0}{ }^{+}$, and $\Gamma_{0}{ }^{\prime+}$ is imbedded into both Δ_{1} and Δ_{2}. Also $\Gamma_{0}{ }^{\prime+} \rightarrow \Delta_{1}$ is an isomorphism onto. The Clifford group which covers the orthogonal group is isomorphic to Δ_{1}, and
this corresponds to the D-part of spinors so called by the physicists.
When K is \mathfrak{R}, the real number field, a quadratic form cannot always be written in the form (3) as we have remarked above. But if we extend K to the complex number field, the representation as (3) is possible, and the real quadratic form f is extended to a Hermitian form, while the representation $I_{0}{ }^{\prime+} \rightarrow \Delta_{1}$ is given by a unitary matrix. This may be an answer to the question why the spinors are treated on the complex number field.

CHAPTER IV. SOME APPLICATIONS OF EXTERIOR ALGEBRAS.

§1. Plücker coordinates. Let K be a field, V a finite n dimensional vector space over K, and E the exterior algebra over V. The decomposition into homogeneous components of E is denoted by $E=\sum_{m} E_{m}$. If x_{1}, \cdots, x_{n} is the base of V, the $\binom{n}{m}$ elements $x_{i_{1}} \cdot x_{i_{m}}\left(i_{1}<\cdots<i_{m}\right)$ form a base of E_{m}.

Definition 41. An element a of E_{m} is called decomposable if a is the product of m elements of V.

Any element in E_{m} is the sum of a finite number of decomposable elements. We remark that $a a=0$ if a is decomposable.

Let W be an m-dimensional linear subspace of V with a base y_{1}, \cdots, y_{m}. By the canonical mapping of W into V, the exterior algebra F of W is naturally isomorphic to the subalgebra of E generated by W, and the homogeneous component F_{m} of degree m in F is therefore in E_{m}. On the other hand, F_{m} is of dimension 1, spanned by $y_{1} \cdots y_{m}$ Thus to any linear subspace W in V of dimension m, there corresponds a 1 -dimensional subspace of E_{m}, namely F_{m}. Conversely, if F_{m} is a 1 -dimensional subspace of E_{m} spanned by a decomposable element, we have an m-dimensional linear subspace W, such that the homogeneous component of degree m of the exterior algebra over W is F_{m}. Also we have $x F_{m}=0$, if and only if $x \in W$. In fact, let y_{1}, \cdots, y_{m} be a base of W. If $x \in W$, we may take $x=y_{1}$, and by $F_{m}=K\left\{y_{1} \cdots y_{m}\right\}$ we have $x y_{1} \cdots y_{m}=0$, and then $x F_{m}=0$. Conversely, if $x \notin W$, the $m+1$ elements x, y_{1}, \cdot, y_{m} being linearly independent, they are part of the base of V, which proves $x y_{1} \cdot y_{m} \neq 0$. Also we have

Theorem 4.1. The elements x_{1}, \cdots, x_{m} of V are linearly independent if and only if $x_{1} \cdots x_{m} \neq 0$ in E.

Also the family of all m-dimensional linear subspaces of V, and the family of 1 -dimensional subspaces of E_{m} which are spanned by
decomposable elements, correspond in a one-to-one manner with each other. If we take a base $\left(x_{1}, \ldots, x_{n}\right)$ of V, we have

$$
y_{1} \cdots y_{m}=\sum_{i_{1}<\cdots<i_{m}} \alpha_{i_{1} \cdots i_{m}} x_{i_{1}} \cdots x_{i_{m}}, \alpha_{i_{1} \cdots i_{m}} \in K
$$

for a base y_{1}, \cdots, y_{m} of W. The ratios of various $\alpha_{i_{1} \cdot i_{m}}$'s are invariant if we take another base $y_{1}^{\prime}, \cdots, y_{m}^{\prime}$ of W, since $y_{1} \cdots y_{m}$ is a base of F_{m}.

Definition 4.2. These ratios of $\alpha_{i_{1} \cdot i_{m}}$'s are called the Pliucker coordinates of W.

Since the base of F_{m} is decomposable, the Plücker coordinates can not freely be chosen, but must satisfy some identities. For example, if $n=4$ and $m=2$, the identity reads:

$$
\alpha_{12} \alpha_{34}+\alpha_{31} \alpha_{24}+\alpha_{23} \alpha_{14}=0 .
$$

§2. Exponential mapping. Let V be a vector space (not necessarily finite dimensional) over the field K, and E be the exterior algebra of V. We shall define the exponential mapping in E. The ordinary exponential function is defincd by the power series

$$
\begin{equation*}
\exp x=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{m}}{m!}+\cdots . \tag{1}
\end{equation*}
$$

For $x \in E$, we may consider the multiplication in E for x^{2}, x^{3}, \cdots, and if x is a homogeneous element of degree >0, we have $x^{m=0}$ for sufficiently large m. But it will cause a difficulty to define $\exp x$ by (1), because of the factor $\frac{1}{m!}$, unless the characteristic of K is
0 . So, we shall proceed in another way. If x is decomposable, we have $x^{2}=0$ and then $\exp x$ may be defined simply by $1+x$. If we restrict ourselves to elements a, b, \cdots of even degree, we have the commutativity $a b=b a$, and we may expect the "addition theorem" of exponential function:

$$
\begin{equation*}
\exp (a+b)=(\exp a)(\exp b) . \tag{2}
\end{equation*}
$$

Hence $\exp x$ may be defined through decomposing x into a sum of decomposable elements. However, in order to assert the uniqueness of this definition, we shall begin with proving some lemmas.

Lemma 4.1. If $x \in E_{h}, h \geqq 1, x \neq 0$, then there exist h derivations d_{1}, \cdots, d_{h} of degree -1 such that $d_{1} \cdots d_{h}(x) \neq 0$.

Since K is a field, we may say that $d_{1} \cdots d_{h}(x)=1$ in multiplying by a suitable scalar.

Proof. Let $\left(y_{i}\right)_{i \in I}$ be a base of V; introduce a relation of linear order into I. A binary relation like $i_{\mu}<i_{\nu}$ means always the relation with respect to this order. Since the elements $y_{i_{1}} \cdot y_{i_{h}}\left(i_{1}<\right.$ $\cdots<i_{h}$) form a base of E_{h}, we can write

$$
\begin{equation*}
x=\underset{i_{1}<\cdots<i_{h}}{\sum} \alpha\left(i_{1}, \cdots, i_{h}\right) y_{i_{1}} \cdot y_{i_{h}}, \quad \alpha\left(i_{1}, \cdots, i_{h}\right) \in K . \tag{3}
\end{equation*}
$$

Since $x \neq 0$, there is at least a sequence of indices ($\left.\bar{i}_{1}, \cdot, \bar{i}_{l}\right)$ such that $\alpha\left(\bar{i}_{1}, \cdot \cdot, i_{h}\right) \neq 0$. Now for each $\nu=1, \cdot, h$, there exists a linear function λ_{ν} in V such that

$$
\begin{equation*}
\lambda_{\nu}\left(y_{i_{\nu}}\right)=1 \text { and } \lambda_{\nu}\left(y_{i}\right)=0 \text { for all } i \neq \bar{i}_{\nu} . \tag{4}
\end{equation*}
$$

By the extension theorem, there is a derivation d_{ν} of degree -1 which extends λ_{y}. We have by the definition of the derivation,

$$
\begin{aligned}
d_{\nu}\left(y_{i_{1}} \cdots y_{i_{h}}\right) & =\left(d_{\nu}\left(y_{i_{1}}\right)\right) y_{i_{2}} \cdots y_{i_{h}}-y_{i_{1}}\left(d_{\nu}\left(y_{i_{2}}\right)\right) y_{i_{s}} \cdot y_{i_{h}}+\cdots \\
& +(-1)^{h-1} y_{i_{1}} \cdots y_{i_{h-1}}\left(d_{\nu}\left(y_{i_{h}}\right)\right) .
\end{aligned}
$$

But (4) shows that $d_{\nu}\left(y_{i}\right)=\lambda_{\nu}\left(y_{i}\right) \neq 0$ only if $i=\bar{i}_{\nu}$, and then we obtain

$$
d_{\nu}\left(y_{i_{1}} \cdot y_{i_{h}}\right)=0 \quad \text { if } \quad \bar{i}_{\nu} \notin\left\{i_{1}, \cdot, i_{h}\right\},
$$

When $i_{\nu} \in\left\{i_{1}, \cdot, i_{h}\right\}$, namely $i_{\nu}=i_{r}$, we have

$$
d_{\nu}\left(y_{i_{1}} \quad y_{i_{h}}\right)=(-1)^{r-1} y_{i_{1}} \cdots \hat{y}_{i_{r}} \cdots y_{i_{h}},
$$

where the symbol \wedge above $y_{i_{r}}$ means that this factor should be omitted from the product. Then we have

$$
d_{h}(x)=\sum \pm \alpha\left(i_{1}, \cdots, i_{h}\right) y_{i_{1}} \cdots \hat{y}_{i_{h}} \cdots y_{i_{h}},
$$

where the summation is taken over the family of indices such that

$$
i_{1}<\cdots<i_{h}, \quad \bar{i}_{h} \in\left\{i_{1}, \cdots, i_{h}\right\} .
$$

By successive applications of d_{v}, we have

$$
d_{1} \cdot d_{h}(x)= \pm \alpha\left(\bar{i}_{1}, \cdot, \bar{l}_{h}\right),
$$

since the terms in the right hand side of (3) vanish unless (i_{1}, \cdots, i_{h}) contains all $\bar{i}_{1}, \cdots, \bar{i}_{h}$. This proves our assertion since we have assumed that

$$
\alpha\left(\bar{z}_{1}, \cdots, \bar{i}_{h}\right) \neq 0
$$

Lemma 4.2. An element $x \in E$ has the property that $d(x)=0$ for every homogeneous derivation d of degree -1 of E, if and only if $x \in E_{0}$.

Proof. It is evident that $x \in E_{0}$ implies $d(x)=0$ for every derivation d of degree -1 . For the converse, we shall prove the contraposition, i. e., the proposition that if $x \notin E_{0}$, then there exists a derivation of degree -1 such that $d(x) \neq 0$. Let $x=\sum_{h} x_{h}$ be the homogeneous decomposition of x. Since $x \notin E_{0}$, we have an integer $h \geq 1$ such that $x_{1}=\cdots=x_{h-1}=0, x_{h} \neq 0$. By the above Lemma 4.1, we have a derivation d of degree -1 , such that $d\left(x_{h}\right) \neq 0$. Since $d\left(x_{0}\right)=0$, and $d(x)=d\left(x_{h}\right)+d\left(x_{h+1}\right)+\cdots$ is the homogeneous decomposition of $d(x)$, we have $d(x) \neq 0$ from $d\left(x_{h}\right) \neq 0$, which proves our statement.

Lemma 4.3. If a is decomposable of degree ≥ 2, and d is a derivation of degree -1 , we have $\operatorname{ad}(a)=0$.

Proof. Putting $a=x b$, where $x \in V$ and b is again a decomposable element of degree $\geqq 1$, we have $d(a)=d(x) b-x d(b)$, and then

$$
a d(a)=x b d(x) b-x b x d(b)=d(x) x b b \pm x x b d(b)=0
$$

since $x x=0, b b=0$.
If the degre of a is even and the characteristic of K is not 2 , this lemma can also be proved from $d(a a)=0$.

Lemma 4.4. Let a_{1}, \cdots, a_{k} be decomposable elements of strictly positive even degrce, such that $a_{1}+\cdots+a_{k}=0$. Then we have

$$
\begin{equation*}
\sum_{i_{1}<\cdots<i_{m}} a_{i_{1}} a_{i_{2}} \cdots a_{i_{m}}=0 . \tag{5}
\end{equation*}
$$

Proof. We first remark that the case of $m=2$ is easily proved unless the characteristic of K is 2 . In fact, we have $a_{i}{ }^{2}=0$, and $a_{i} a_{j}=a_{j} a_{i}$, because the a_{i} 's are decomposable elements of even degree. Hence we obtain

$$
0=\left(a_{1}+\cdots+a_{k}\right)^{2}=\sum_{i} a_{i}{ }^{2}+\sum_{i, j} a_{i} a_{j}=2 \sum_{i<j} a_{i} a_{j},
$$

and then the constant factor 2 can be removed, provided that the characteristic is not 2.

But we shall give a demonstration which is valid in the general cases. Putting

$$
u=\sum_{i_{1}<\cdots<i_{m}} a_{i_{1}} \cdots a_{i_{m}},
$$

it is sufficient to show that $d(u)=0$ for every derivation d of degree -1 by Lemma 42 . Since a_{i} 's are all of even degree, they are commutative with any element in E. Thus we have

$$
\begin{aligned}
& \left.\cdots+a_{i_{1}} \cdots a_{i_{m-1}}\left(d\left(a_{i_{m}}\right)\right)\right] \\
& =\underset{i_{1}<\cdots<i_{m}}{\sum}\left[a_{i_{2}} \cdots a_{i_{m}}\left(d\left(a_{i_{1}}\right)\right)+a_{i_{1}} a_{i_{3}} \cdot a_{i_{m}}\left(d\left(a_{i_{2}}\right)\right)+\right. \\
& \left.\cdots+a_{i_{1}} \cdots a_{i_{m-1}}\left(d\left(a_{i_{m}}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{\imath<\cdots<j_{m-1}}^{\sum} a_{j_{1}} \cdots a_{j_{m-1}}\right)\left(\sum_{i=1}^{k} d\left(a_{i}\right)\right)-\sum_{\substack{j_{1} \lll j_{m-1} \\
i \in\left\{j_{1}, \cdots, j_{m-1}\right\}}} a_{j_{1}} \cdot a_{j_{m-1}} d\left(a_{i}\right) .
\end{aligned}
$$

But since $\sum d\left(a_{i}\right)=d\left(\sum a_{i}\right)=0$ by our assumption, and $a_{i} d\left(a_{i}\right)=0$. by Lemma 4.3, we have $d(u)=0$ which proves our statement.

Now we shall give the definition of the exponential mapping on the space F of elements whose degrees are even:

$$
F=E_{2}+E_{4}+\cdot \cdot+E_{2 h}+
$$

First we define $\exp a=1+a$ if a is decomposable. For any element $u \in F$, it is possible in at least one way to represent u in the form $u=a_{1}+\cdots+a_{k}$ where each a_{i} is decomposable and of even degree, because each $E_{2 h}$ has a base consisting of decomposable elements. Then we define

$$
\begin{equation*}
\exp u=\left(1+a_{1}\right)\left(1+a_{2}\right) \cdot\left(1+a_{k}\right) . \tag{6}
\end{equation*}
$$

While the representation $u=a_{1}+\cdots+a_{k}$ by decomposable elements is not unique, $\exp u$ is determined uniquely by u. Precisely speaking, if we represent u in two manners

$$
u=a_{1}+\cdots+a_{k}=b_{1}+\cdots+b_{l},
$$

where a_{i} and b_{j} are decomposable, we have

$$
\begin{equation*}
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{k}\right)=\left(1+b_{1}\right)\left(1+b_{2}\right) \cdots\left(1+b_{l}\right) . \tag{7}
\end{equation*}
$$

In fact, putting $a_{k+1}=-b_{1}, ., a_{k+l}=-b_{l}$, we have $a_{1}+a_{2}+\cdots+a_{k+l}=0$, where a_{1}, \ldots, a_{k+l} are all decomposable. Then we have by Lemma 4.4 that

$$
\begin{equation*}
\sum_{i_{1}<\cdots<1_{m}} a_{i_{1}} \cdots a_{i_{m}}=0 . \tag{5}
\end{equation*}
$$

The expression $\left(1+a_{1}\right)\left(1+a_{2}\right) \cdot\left(1+a_{k+l}\right)$ is expanded by the "polynomial theorem" since a_{i} 's are mutually commutative, and all terms except 1 vanish because of (5). Thus we obtain,

$$
\begin{align*}
& \left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{k+l}\right) \tag{8}\\
& \quad=\left(1+a_{1}\right) \cdots\left(1+a_{k}\right)\left(1-b_{1}\right) \cdots\left(1-b_{l}\right)=1 .
\end{align*}
$$

On the other hand we have $\left(1+b_{j}\right)\left(1-b_{j}\right)=1-b_{j}^{2}=1$, since b_{j} is decomposable. Multiplying $\left(1+b_{1}\right)\left(1+b_{2}\right) \cdots\left(1+b_{l}\right)$ to both sides of (8), we have (7), since a_{i}, b_{j} are mutually commutative.

Definition 4.3. The mapping $u \rightarrow \exp u$ defined above is called the exponential mapping of $F \rightarrow E$.

It is evident from the definition that exp u satisfies

$$
\exp (a+b)=(\exp a)(\exp b) \quad(a, b \in F)
$$

In particular when V is a finite dimensional vector space, whose dimension is even, namely $2 m$, we take a base $y_{1}, \cdots, y_{2 m}$. Let Γ be a homogeneous element of degree 2 . The homogeneous component of degree 2 of $\exp \Gamma$ is a multiple of $y_{1} \cdots y_{2 m}$, namely

$$
\left(\exp \Gamma^{\prime}\right)_{2 m}=P_{\Gamma}\left(y_{1} \cdot y_{2 m}\right), \quad P_{\Gamma} \in K
$$

Definition 4.4. P_{Γ} is called the Pfaffian of $\Gamma \in E_{2}$.
If Γ is represented by a sum of m decomposable elements ${ }^{1}$) of

1) This condition can be proved to be satisfied by the theory of skewsymmetric forms, but here we assume this property.
degree 2, putting $\Gamma=a_{1}+\cdots+a_{m}$, we have

$$
\exp \Gamma=\left(1+a_{1}\right) \cdots\left(1+a_{m}\right),
$$

and expanding the right hand side by polynomial theorem, the term of degree $2 m$ is merely $a_{1} \cdots a_{m}$. On the other hand, using the polynomial theorem for $\Gamma^{m}=\left(a_{1}+\cdots+a_{m}\right)^{m}$, and noting that $a_{i}{ }^{2}=0$, we have $\Gamma^{m}=m!a_{1} \cdot a_{m}$, which proves

$$
\begin{equation*}
m!\left(\exp I^{\prime}\right)_{2 m}=l^{\prime m} \tag{9}
\end{equation*}
$$

If the characteristic of K is 0 or relatively prime to m !, we obtain

$$
(\exp \Gamma)_{2 m}=I^{\top m / m!} .
$$

§3. Determinants. Let V be a finite n-dimensional vector space over K. An endomorphism s of V is extended uniquely to a homomorphism S_{s} of $E \rightarrow E$, which is homogeneous of degree 0 . Since E_{n} is of dimension 1 and $S_{s}\left(E_{n}\right) \subset E_{n}$, there exists a uniquely determined scalar Δ_{s} such that

$$
\begin{equation*}
S_{s} z=\Delta_{s} z \quad \text { for } \quad z \in E_{n} . \tag{1}
\end{equation*}
$$

Definition 4.5. This Δ_{s} is called the determinant of the endomorphism s and denoted by $\Delta_{s}=\operatorname{det} s$.

The properties of determinant are easily proved from this definition. For example, we shall show

Theorem 4.2. $1^{\circ}(\operatorname{det} s)\left(\operatorname{det} s^{\prime}\right)=\operatorname{det}\left(s \circ s^{\prime}\right)$.
2°. det $s \neq 0$ if and only if s is an automorphism of V.
Proof. 1°. Let s, s^{\prime} be two endomorphisms of $V . S_{s} \circ S_{s^{\prime}}$ is a homomorphism of $E \rightarrow E$ which coincide with $S_{s} \cdot s^{\prime}$ in V, and thus we have $S_{\mathrm{s}} \circ S_{s^{\prime}}=S_{s} \circ s^{\prime}$. Therefore, for $z \in E_{n}$, we obtain

$$
\Delta_{s \circ s^{\prime}} z=S_{s \circ s^{\prime}} z=S_{s} \circ S_{s^{\prime}} z=S_{s}\left(\Delta_{s^{\prime}} z\right)=d_{s^{\prime}}\left(S_{s^{\prime}} z\right)=d_{s^{\prime}} \Delta_{s} z,
$$

which proves our assertion, since we have assumed that K is commutative.
2°. If (x_{1}, \cdots, x_{n}) is a base of V, E_{n} is spanned by $x_{1} \cdots x_{n}$, and we have

$$
\begin{gather*}
\Delta_{s}\left(x_{1} \cdots x_{n}\right)=S_{s}\left(x_{1} \cdots x_{n}\right) \tag{2}\\
=S_{s}\left(x_{1}\right) \cdots S_{s}\left(x_{n}\right)=s\left(x_{1}\right) \quad s\left(x_{n}\right)
\end{gather*}
$$

since S_{s} is a homomorphism. Therefore by Theorem 4.1, det $s=0$ if and only if $s\left(x_{1}\right) \cdots s\left(x_{n}\right)$ are linearly dependent, and then it is equivalent to the fact that s is not an automorphism of V.

Now, if we write

$$
s\left(x_{i}\right)=\sum_{j=1}^{n} a_{j i} x_{j}
$$

we have

$$
\begin{aligned}
\Delta_{s}\left(x_{1} \cdot x_{n}\right) & \left.=s x_{1}\right) \cdots s\left(x_{n}\right)=\left(\sum a_{j 1} x_{j}\right) \cdots\left(\sum a_{j n} \cdot x_{j}\right) \\
& =\sum_{i_{1} \ldots, i_{n}} a_{i_{1} 1} \cdot a_{i_{n} n}\left(x_{i_{1}} \ldots x_{i_{n}}\right) .
\end{aligned}
$$

But $x_{i_{1}} \cdot x_{i_{n}}=0$ if there exists a pair of indices such that $i_{\mu}=i_{\nu}$ ($\mu \neq \nu$), and when the (i_{1}, \quad, i_{n}) are all distinct, we have $x_{i_{1}} \cdot x_{i_{n}}=$ $\operatorname{sgn}\left(i_{1}, \cdot, i_{n}\right)\left(x_{1} \cdot x_{n}\right)$, where $\operatorname{sgn}\left(i_{1}, \cdots, i_{n}\right)$ is +1 or -1 according as (i_{1}, \quad, i_{n}) is an even or odd permutation of ($1, \cdots, n$). Thus we obtain

$$
\Delta_{s}^{\prime}\left(x_{1} \cdots x_{n}\right)=\sum_{i_{1}, \cdots, i_{n}} a_{i_{1}} \cdots a_{i_{n} n} \operatorname{sgn}\left(i_{1}, \cdots, i_{n}\right)\left(x_{1} \cdots x_{n}\right)
$$

which proves that

$$
\begin{equation*}
\operatorname{det} s=\operatorname{det}\left(a_{j i}\right)=\sum \operatorname{sgn}\left(i_{1}, \cdots, i_{n}\right) a_{i 11} \cdots a_{i_{n} n}, \tag{3}
\end{equation*}
$$

where the summation is taken in all the sets $\left(i_{1}, \cdots, i_{n}\right)$ such that i_{1}, \quad, i_{n} are all distinct. This shows that det s may be expressed as a polynomial with the coefficients ± 1 in the $a_{j i}$'s.

Now, let U be a vector space of $2 n$ dimensions over K; we assame that U is given by the direct sum of two n dimensional linear subspaces V and $W: U=V+W$. Let $\left(x_{1}, \cdots, x_{n}\right),\left(y_{1}, \cdot, y_{n}\right)$ be the bases of V and W respectively. Taking together with x_{i}^{\prime} 's and y_{i} 's, they form a base of U. We define a bilinear form $\beta(x, y)$ on $U \times U$ in setting

$$
\begin{equation*}
\beta\left(x_{i}, x_{j}\right)=\beta\left(y_{i}, y_{j}\right)=0, \beta\left(x_{i}, y_{j}\right)=\delta_{i j} \quad(i, j=1, \cdots, n), \tag{4}
\end{equation*}
$$

then β is a symmetric non-degenerate bilinear form on $U \times U$, satisfying $\beta(V, V)=\beta(W, W)=0$.

The set of all linear functionals over V is again an n-dimensional vector space over K which is called the dual space of V and denoted
by V^{*}. In our present case, to any $y \in W$, the functional over V defined by

$$
\begin{equation*}
\lambda_{y}(x)=\beta(x, y) \text { for } \quad x \in V, \tag{5}
\end{equation*}
$$

is linear, and belongs to V^{*}. Since $\lambda_{y}\left(x_{i}\right)=\delta_{i j}$, the mapping λ : $y \rightarrow \lambda_{y}$ is a linear isomorphism of W onto V^{*}. Therefore we may identify W and V^{*} with each other.

If s is an automorphism of V, we can define an automorphism t_{s} of V^{*} by

$$
\left(t_{s} \lambda\right)(x)=\lambda(s x) .
$$

We have easily $\left({ }^{t} s\right)^{-1}=t\left(s^{-1}\right)$ and this automorphism of V^{*} is denoted by \hat{s}. Since V^{*} is identified with W, \hat{s} is also an automorphism of W. Then there exists an automorphism S_{s} of U which coincides with s on V and \hat{s} on W respectively. We shall prove the following:

Theorem 4.3. We have $\operatorname{det} S_{s}=1$.
We first prove the following:
Lemma 4.5. We put

$$
\Theta=\sum_{i=1}^{n} x_{i} \otimes y_{i},
$$

which is an element of degrce 2 in the tensor algcbra over $U . S_{s}$ extends to an automorphism of the tensor algebra over U, and this extended automorphism leaves Θ fixed.

Proof of Lemma 4.5. What we have to prove is the identity

$$
\begin{equation*}
\sum_{i=1}^{n} s x_{i} \otimes \hat{s} y_{i}=\sum_{i=1}^{n} x_{i} \otimes y_{i} \tag{6}
\end{equation*}
$$

Since we have identified V^{*} with W, putting

$$
s x_{i}=\sum_{k=1}^{n} a_{k i} x_{k},
$$

we have by (4) and (5)

$$
\begin{aligned}
\beta\left(x_{i}, t_{s y_{k}}\right)=\left(t_{s} \lambda_{y_{k}}\right)\left(x_{i}\right) & =\lambda_{y_{k}}\left(s x_{i}\right)=\beta\left(s x_{i}, y_{k}\right) \\
& =a_{k i}=\beta\left(x_{i}, \sum_{j=1}^{n} a_{k j} y_{j}\right) .
\end{aligned}
$$

This implies

$$
\begin{equation*}
{ }^{t_{S}} y_{k}=\sum_{j=1}^{n} a_{k j} y_{j} \tag{7}
\end{equation*}
$$

which proves that the matrix corresponding to t_{s} is the transposed matrix of the automorphism s ．Applying \hat{s} on（7），we have

$$
y_{k}=\sum_{i=1}^{n} a_{k i}\left(\dot{s} y_{i}\right),
$$

and then

$$
\begin{aligned}
\sum_{i=1}^{n} s x_{i} \otimes \hat{s} y_{i} & =\sum_{i, k} a_{k i} x_{k} \otimes \hat{s} y_{i}=\sum_{k=1}^{n}\left(x_{k} \otimes \sum_{i=1}^{n} a_{k i} i\left(\hat{s} y_{i}\right)\right) \\
& =\sum_{k=1}^{n} x_{k} \oslash y_{k},
\end{aligned}
$$

which proves（6）．
Now we return to the proof of det $S_{s}=1$ ．Since the exterior algebra E_{U} over U was defined by the canonical image of the tensor algebra over U（see §2，Chap．III），we denote the canonical image of Θ in E_{U} by $\Gamma . \Gamma$ is represented by

$$
\Gamma=\sum_{i=1}^{n} x_{i} y_{i}
$$

By Lemma 4．5，the automorphism 早2）of E_{U} which extends S_{s} leaves I fixed．Then 早 leaves（ $\exp \Gamma$ ）invariant，because the exponential mapping is defined intrisically in the exterior algebra．More pre－ cisely，since $x_{i} y_{i}$ and 早 $\left(x_{i} y_{i}\right)=s\left(x_{i}\right) \hat{s}\left(y_{i}\right)$ are decomposable，we have

$$
\begin{aligned}
\exp \Gamma & =\left(1+x_{1} y_{1}\right)\left(1+x y_{2}\right) \cdots\left(1+x_{n} y_{n}\right) \\
& =\left(1+\text { 早 }\left(x_{1} y_{1}\right)\right)\left(1+\text { 早 }\left(x_{i} y_{2}\right)\right) \cdots\left(1+\text { 早 }\left(x_{n} y_{n}\right)\right) \\
& =\text { 早 }\left(\left(1+x_{1} y_{1}\right)\left(1+x_{2} y_{2}\right) \cdots\left(1+x_{n} y_{n}\right)\right)=\text { 早 }(\exp \Gamma)
\end{aligned}
$$

Hence 早 leaves also invariant the component $(\exp \Gamma)_{2 n}$ of the highest dimension of exp I^{\prime} ．On the other hand，I^{\prime} being the sum of n decomposable elements，we have

$$
\left(\exp I^{\top}\right)_{2 n}=x_{1} y_{1} x_{2} y_{2} \cdots x_{n} y_{n}
$$

as we remarked at the end of $\S 2$ ，and it is a basic element $\neq 0$ in $\left(E_{U}\right)_{2 n}$ ．Therefore we have by the definition of the determinant

2）Read＂sô＂．

$$
\begin{aligned}
& \text { IV. SOME APPLICATIONS } \\
& \left(\operatorname{det} S_{s}\right)\left(x_{1} y_{1} \cdots x_{n} y_{n}\right)=\text { 早 }\left(x_{1} y_{1} \cdots x_{n} y_{n}\right) \\
& =x_{1} y_{1} \cdots x_{n} y_{n} \neq 0,
\end{aligned}
$$

which proves $\operatorname{det} S_{s}=1$ ．
Theorem 4．4．Let U, V, W be as before．If s is an automorphism of U ，which leaves V and W fixed，and if we denote by s_{V} ，s_{W} the contractions of s into V and W respectively，then

$$
\operatorname{det} s=\left(\operatorname{det} s_{V}\right)\left(\operatorname{det} s_{W}\right) .
$$

Proof．This theorem follows from $E_{U} \cong E_{V} \otimes E_{W}$ ，but we shall give a simpler demonstration．Let $\left(x_{1}, \cdot, x_{n}\right),\left(y_{1}, \cdots, y_{n}\right)$ be bases of V and W respectively．We denote by 早 the automorphism of E_{U} which extends s ．By the definition of the determinant，we have

$$
\text { 早 }\left(x_{1} \cdot x_{n}\right)=\left(\operatorname{det} s_{V}\right)\left(x_{1} \cdots x_{n}\right)
$$

since E_{V} is generated by x_{1}, \cdot, x_{n} in E_{U} and $\boldsymbol{\varphi}\left(E_{V}\right) \subset E_{V}$ ．Similarly we have

$$
\text { 早 }\left(y_{1} \cdot y_{n}\right)=\left(\operatorname{det} s_{W}\right)\left(y_{1} \cdot y_{n}\right) \text {, }
$$

and then

$$
\begin{gathered}
(\operatorname{det} s)\left(x_{1} \cdot x_{n} y_{1} \cdots y_{n}\right)=\text { 早 }\left(x_{1} \cdot x_{n} y_{1} \cdots y_{n}\right) \\
=\text { 早 }\left(x_{1} \cdot x_{n}\right) \text { 早 }\left(y_{1} \cdots y_{n}\right)=\left(\operatorname{det} s_{V}\right)\left(x_{1} \cdots x_{n}\right)\left(\operatorname{det} s_{W}\right)\left(y_{1} \cdots y_{n}\right) \\
=\left(\operatorname{det} s_{V}\right)\left(\operatorname{det} s_{W}\right)\left(x_{1} \cdot x_{n} y_{1} \cdots y_{n}\right),
\end{gathered}
$$

which proves our statement．
Corollary．The determinant of a matrix s is equal to the deter－ minant of its transposed one：det $t_{s}=\operatorname{det} s$ ．

Proof．The automorphism S_{s} of U which coincides with s and \dot{s} on V and W respectively satisfies the conditions of Theorem 4．4． Then we have，from two theorems given above，that

$$
(\operatorname{det} s)(\operatorname{det} \hat{s})=\operatorname{det} S_{s}=1
$$

On the other hand $(\operatorname{det} \hat{s})\left(\operatorname{det} t_{s}\right)=1$ ，because of $\hat{s}=\left({ }^{\boldsymbol{t} s}\right)^{-1}$ ，which proves our assertion．
§4．An application to combinatorial topology．As an applica－ tion of the theory of exterior algebra，we shall give a demonstration of a fundamental property in the theory of combinatorial topology：
that the boundary of a boundary is 0 .
We are now dealing with the combinatorial topology, and take all vertices P_{a}. In the singular homology theory, all points in the space are the $\left\{P_{\alpha}\right\}$. We construct a vector space V of which the P_{a} 's form its base. Any element of V is a 0 -dimensional chain in the homology theory. Now a simplex σ is ordinarily defined as a set of a finite number of $P_{\alpha^{\prime}}$'s : $\sigma=\left(P_{\alpha_{1}}, \cdots, P_{\alpha_{h}}\right)$ with an orientation which makes σ skew-symmetric symbol. This law of orientation is quite the same one as in the exterior algebra; it is appropriate to represent the simplex $\sigma=\left(P_{\alpha_{1}}, \cdots, P_{\alpha_{h}}\right)$ by the element $P_{\alpha_{1}} \cdots P_{\alpha_{h}}$ in the exterior algebra E_{V} over V. A p-dimensional simplex is of degree $p+1$ in E_{V}. Next we define the boundary operation. There exists a linear mapping δ on V such that $\delta P_{\alpha}=1$ for all α. Then we have a derivation d of degree -1 which extends δ. If we apply d to a simplex $\sigma=\left(P_{\alpha_{1}}, \cdot, P_{\alpha_{h}}\right)$, we have

$$
\begin{gathered}
d \sigma=\left(d P_{\alpha_{1}}\right) P_{\alpha_{2}} \cdots P_{\alpha_{h}}-P_{\alpha_{1}}\left(d P_{\alpha_{2}}\right) P_{\alpha_{3}} \cdots P_{\alpha_{h}} \\
+-\cdots \pm P_{\alpha_{1}} \cdots P_{\alpha_{h-1}}\left(d P_{\alpha_{h}}\right) \\
=P_{\alpha_{2}} \ldots P_{\alpha_{h}}-P_{\alpha_{1}} P_{\alpha_{3}} \ldots P_{\alpha_{h}}+-\cdots+(-1)^{r-1} P_{\alpha_{1}} \cdots \hat{P}_{\alpha_{r}} \cdots P_{\alpha_{h}} \\
+-\cdots+(-1)^{n-1} P_{\alpha_{1}} \cdots P_{\alpha_{h-1}} .
\end{gathered}
$$

This expression coincides with the ordinary definition of the boundary operation. So, we definc the boundary operation by d. Then d being a derivation of odd degree, d^{2} is again a derivation and the property

$$
d^{2}\left(P_{\infty}\right)=d\left(d P_{\alpha}\right)=d(1)=0,
$$

proves $d^{2}=0$. Hence the boundary of a boundary is 0 .
Although there are many other interesting applications of the exterior algebras, we omit them because of the restriction of time. We only mention an application to physics; the equaions of Maxwell in the theory of electro-magnetism may be represented elegantly using the forms of exterior algebra. ${ }^{3}$)
3) See Erich Kähler, Bemerkungen über die Maxwellschen Gleichungen, Hamburg Abhandlungen, 12 (1938), pp. 1-28.

INDEX

Algebra, vi
Associated gradation, 7
Associated semi-graded algebra, 7
Bilinear form (associated to a quadratic form), 33
Boundary operation, 62
Canonical anti-automorphism, 42
Clifford algebra, 33, 34
Clifford group, 46
Commutative diagram, 12
Component, 4
Decomposable, 51
Derivation, 9,13
Determinant (of an endomorphism), 57
Diagram, 12
D-part of spinor, 50
Dual space, 58
Exponential mapping, 52, 56
Exterior algebra, 35
$\%$-derivation, 9
Free algebra, 1
Free system of generators, 1
r-graded algebra, 3
Generated, 5
Generators, Set of, vi
Graded algebra 3, 4
h-linear mapping 21,27
Half spin representation, 49
Homogeneous element, 4
Homogeneous linear mapping, 6
Homogeneous subalgebra, 5
Homomorphism (of Γ-graded algebras), 4

Ideal, two sided, vi
Index (of a quadratic form), 48
Length (of a finite sequence of elements), 1

Main anti-automorphism, 42
Main involution, 8
Module, vi
Multilinear mapping, 21
Non-degenerate (bilinear form), 46
Orthogonal automorphism, 46
Orthogonal elements, 33
Orthogonal group, 46
Orthogonal transformation, 46
Pfaffian, 56
Plücker coordinates, 52
Quadratic form, 33
Reduced Clifford group, 47
Reduced orthogonal group, 47
Scalar, vi
Scalar multiple, vi
Semi-graded algebra, 5
Set of generators, vi
Simplex, 62
So (早), 60
Spin representation, 48
Spinor, 48, 49
Tensor algebra, 17
Tensor product, 23, 27, 30
Tensor representation, 26
Totally singular (linear subspace), 48
Trace, 45
Unit, vi
Universal, 2
Vector representation, 47

CONTENTS

Page
Conventions vi
Chapter I Graded algebras 1
Chapter II Tensor algebras 17
Chapter III Clifford algebras 33
Chapter IV Some applications of exterior algebras 51
Index 63

Editor's Note

The foregoing is the reproduction of the beautiful lectures delivered by Professor C. Chevalley at the University of Tokyo in April- June 1954, after the notes taken by S. Hitotumatu and N. Yoneda. S. Fukutomi has prepared the manuscript for printing, and all three have read the proofs. The Editor is responsible for any mistakes in the text.

[^0]: 1) This means that T is generated by M and 1 in the ordinary sense. See the "Conventions".
[^1]: 3) An h-linear mapping means a function $\beta\left(x_{1}, \cdots, x_{h}\right)$ of h arguments x_{1}, \cdots, x_{h}, which is linear with respect to each argument when the other $h-1$ are kept fixed, i. e., we have

 $$
 \begin{gathered}
 \beta\left(x_{1}, \cdots, x_{i-1}, a x_{i}+b x_{i}^{\prime}, x_{i+1}, \cdots, x_{h}\right)=a \beta\left(x_{1}, \cdots, x_{i-1}, x_{i}, x_{i+1}, \quad, x_{h}\right) \\
 \quad+b \beta\left(x_{1}, \cdots, x_{i}-1, x_{i}{ }^{\prime}, x_{i+1}, \cdots, x_{h}\right), \\
 \text { for } a, b \in A ; x_{1}, \cdots, x_{h}, x_{i} \in M ; i=1, \cdots, h .
 \end{gathered}
 $$

